
Grant K. Slender

Developing with

Ext GWT
Enterprise RIA Development

Books for professionals By professionals®

Developing with Ext GWT:
Enterprise RIA Development
Dear Reader,

Late nights chatting with the developer of Ext GWT about the details of how this new
and exciting GWT framework works, explaining concepts and approaches, finally
resulted in the realization that a book on Ext GWT development was desperately
needed. As a complete rich Internet application (RIA) framework, Ext GWT offered
much more than just a few simple buttons and windows—so this book is for the grow-
ing community of Java developers who are looking for an easier approach to entering
the Ajax and RIA landscape.

Based on the exciting new UI library from Ajax leaders Ext JS and the latest GWT
release, this book takes the reader through setup, the available widgets, and advanced
custom widgets and templates, and concludes with a functional sample client-server
application in around 140 pages. Not your typical beginner’s guide to programming,
this book provides a rapid approach to becoming effective with leading commercial
RIA tools and libraries.

• A practical approach to enterprise RIA development using industry-proven tools.
• Full coverage of the new Ext GWT 2.0 widget library using the GWT 1.6

framework.
• Designed for professional developers needing a quick, no-nonsense overview of

the initial requirements to get started.
• Full coverage of layouts and many advanced features (such as Drag-n-Drop, Grid,

Store and Data API, and Charts).
• Concludes with a complete example application that showcases an enterprise-

style rich Internet application.

Slender
Developing w

ith Ext GW
T

Apress’s firstPress series is your source for understanding cutting-edge technology. Short, highly
focused, and written by experts, Apress’s firstPress books save you time and effort. They contain
the information you could get based on intensive research yourself or if you were to attend a
conference every other week—if only you had the time. They cover the concepts and techniques
that will keep you ahead of the technology curve. Apress’s firstPress books are real books, in your
choice of electronic or print-on-demand format, with no rough edges even when the technology
itself is still rough. You can’t afford to be without them.

this print for content only—size & color not accurate spine = 0.3" 140 page count

User level:
Intermediate–Advanced

www.apress.com
SOURCE CODE ONLINE

140
PAGeS

Available as a
PDF Electronic Book
or Print On Demand

RElATED TITlES

Practical Ext JS Projects
with Gears

Accelerated GWT: Building
Enterprise Google Web
Toolkit Applications

Pro Web 2.0 Application
Development with GWT

About firstPress
Apress's firstPress series is your source for understanding cutting-edge technology.
Short, highly focused, and written by experts, Apress's firstPress books save you time and
effort. They contain the information you could get based on intensive research yourself or
if you were to attend a conference every other week––if only you had the time. They
cover the concepts and techniques that will keep you ahead of the technology curve.
Apress's firstPress books are real books, in your choice of electronic or print-on-demand
format, with no rough edges even when the technology itself is still rough. You can't
afford to be without them.

Developing with Ext GWT: Enterprise RIA Development
Dear Reader,

Late nights chatting with the developer of Ext GWT about the details of how this new
and exciting GWT framework works, explaining concepts and approaches, finally
resulted in the realization that a book on Ext GWT development was desperately needed.
As a complete rich Internet application (RIA) framework, Ext GWT offered much more
than just a few simple buttons and windows—so this book is for the growing community
of Java developers who are looking for an easier approach to entering the Ajax and RIA
landscape.

Based on the exciting new UI library from Ajax leaders Ext JS and the latest GWT
release, this book takes the reader through setup, the available widgets, and advanced
custom widgets and templates, and concludes with a functional sample client-server
application in around 140 pages. Not your typical beginner’s guide to programming, this
book provides a rapid approach to becoming effective with leading commercial RIA tools
and libraries.

 A practical approach to enterprise RIA development using industry-proven tools.

 Full coverage of the new Ext GWT 2.0 widget library using the GWT 1.6
framework.

 Designed for professional developers needing a quick, no-nonsense overview of
the initial requirements to get started.

 Full coverage of layouts and many advanced features (such as Drag-n-Drop,
Grid, Store and Data API, and Charts).

 Concludes with a complete example application that showcases an
enterprisestyle rich Internet application.

 Developing with Ext GWT i

Contents
Introduction.. iv

This Book’s Audience... iv
Getting the Example Code.. iv
About the Author .. iv

Chapter 1: Overview of Ext GWT and GWT ...1
About Ext GWT.. 1
About GWT .. 3

GWT Crash Course ...4
Summary .. 7

Chapter 2: Organizing the Environment ...9
The Basic Ingredients.. 9
Setting Up Eclipse.. 10

Defining User Libraries...10
Creating an Application ..11
Importing to Eclipse..12
Adjusting for GXT ..13
My First GXT App..16

Summary .. 17
Chapter 3: Widgets, Widgets, Everywhere ...19

The Complete Ext-ended Family... 20
.widget .. 21

Component ..21
How Things Are Rendered..22
Events..23
Sinking Events ..23
Container...24
LayoutContainer..25
ContentPanel ...26

ii Developing with Ext GWT

Viewport..29
Window and Dialog ..29
MessageBox ..30
TabPanel and TabItem ..32
Html and HtmlContainer...33
ProgressBar ...34
Slider ...35
DataList...36
ListView..37

.widget.button... 38
Button, ToggleButton, and SplitButton...39
Status...40
IconButton and ToolButton...42

.widget.toolbar.. 42

.widget.menu .. 43

.widget.tips.. 45
State Management ... 46
Themes—Let’s Make It Pretty .. 47
Summary .. 49

Chapter 4: Advanced Widgets and Stuff...51
Layouts ... 51

GWT Panels ..51
Cascading Layouts ..54
Layout Managers...54
Layout Tips-n-Tricks ..57
CenterLayout...58
AnchorLayout and AbsoluteLayout ..58
FitLayout and FlowLayout..59
AccordianLayout and CardLayout ..60
RowLayout and FillLayout ...61
HBoxLayout and VBoxLayout ...63
ColumnLayout, TableLayout, and TableRowLayout..64
BorderLayout ..65
FormLayout...67

Forms ... 67
A Form Example ...69
Form’s Rich Text Editor ...73

 Developing with Ext GWT iii

Portal .. 74
Drag-n-Drop .. 75
XTemplates... 77
Summary .. 78

Chapter 5: Working With Data ..79
Data, Stores, and Loaders ... 79

Models...79
Stores...80
Loaders..81
Using BeanModel Objects ..82
Stores and Loaders ..84
GWT RPC...85

Grid... 89
A Basic Grid..90
EditorGrid ...91
Even More Grid...97

Binders: Table, Tree, and TreeTable .. 101
Summary .. 104

Chapter 6: A Working Example ..105
myCustomerContacts Application—What’s New?... 106

When Loading...106
Customer Data...107
Keeping Data Independent ..109
Layout and Construction ...109
When the Module Loads ...111
Preparing for Services ...112
Building the Main Layout ...115
Building the Grid Panel...116
Building the Form Panel ...122
Building the Chart Panel ...125
Additional Bits ..128
The Server Code..132

Summary .. 133

iv Developing with Ext GWT

Introduction
Developing rich Internet applications (RIAs), web applications that look and function like
traditional desktop applications, can often be a complex and difficult process. Ensuring your
application looks right and works as expected is not easy. Initial solutions relied on browser
plug-ins and specific scripting languages, but since the release of Google Web Toolkit (GWT)
and related RIA widget frameworks such as Ext GWT, RIA development is now easier and
more flexible. So, if you can build Java applications, you can quickly build an enterprise-class
rich Internet application.

Focusing on everything you need to know about Ext GWT, this book will show you the tasks
necessary to build enterprise-class rich Internet applications. I will assume you are familiar with
Java and only need a crash course in GWT—after all, I’d rather be showing you how to use
some neat and clever widget as part of a rich Internet application. So let’s get into it.

This Book’s Audience
This book is for enterprise Java developers who have a need to rapidly gain high-quality results
in the RIA space using Ext GWT. This book also offers some insight on Ext GWT to the casual
developers who are looking to add that “enterprise-RIA” look to their existing GWT
application.

This book was written when Ext GWT 2.0 was nearing release and is based on GWT 1.6; this
book contains information on the most current and recent available RIA technologies.

Getting the Example Code
All of the example code, including instructions on how to use it, is available in the Source Code
page of the Apress web site (http://www.apress.com).

About the Author
Grant Slender has been an IT instructor, engineer, consultant, and developer since 1995. His
first exposure to Java was in 1997 when he attended a Sun Microsystems training course, and he
has been a loyal follower ever since. After observing Google’s success with GWT, he started
looking for a widget library that would complement and extend it. In 2007, he discovered Ext
GWT and has become an active contributor to the community, producing several custom
widgets. He currently provides consulting services specializing in Ext GWT.

Grant can be reached by sending an e-mail to gslender@gmail.com.

http://www.apress.com
mailto:gslender@gmail.com

 Developing with Ext GWT 1

Chapter 1: Overview of Ext GWT and GWT
Ext GWT and GWT are a powerful combination that can produce some amazing looking and
performing web applications. Java developers looking for an RIA framework where they can
leverage their existing investment and knowledge in tools and libraries will really appreciate
Ext GWT.

You will be able to use your existing knowledge in development environments, build tools, and
web application servlet containers and be right at home with Ext GWT. Throughout this book, I
will be introducing and using the popular Eclipse Java IDE, but you should be able to use any
similar set of tools that you feel more comfortable with.

This chapter will provide you with an outline of Ext GWT, a quick overview of its features, and
a little bit of background information. I will also provide a quick overview of GWT, and a crash
course introduction into how it works and how applications are assembled.

About Ext GWT
Ext GWT (also shortened as GXT) is a GWT-based enterprise widget framework built by ExtJS
(http://www.extjs.com), the company that developed the highly popular JavaScript library of
the same name. As an extension to Google’s toolkit, GXT adds a wealth of enterprise-grade
interactive widgets, layouts, and template classes, a complete data model and caching store, and
a model-view-controller (MVC) application framework.

Starting life as an open source project named “MyGWT,” the project’s lead developer joined
ExtJS and further expanded the library, rewriting many aspects of the original framework. Now
at version 2.0, GXT boasts an impressive set of features designed to fast-track RIA
development.

Following is a short summary of these features:

 Grids, list and data views, trees, and tables for displaying and editing data.

 Framed and tabbed panels, and layout managers to border and arrange things in.

 Enhanced windows, dialogs, and message/alert and information boxes.

 Forms with plain and rich text editors, number, and password fields; combo drop-down
boxes; time and date calendar; and radio and check boxes.

 Buttons, tool tips, toolbars, status bars, and menu bars.

 Local caching stores, loaders, and data models to ensure data can be simply managed via
widgets.

http://www.extjs.com

2 Developing with Ext GWT

 Advanced user interface options for desktop and portal applications, including an MVC
framework.

 A range of miscellaneous effects, such as resizable and dragable options for widgets and
containers.

EXT GWT FACTS
Pronouncing Ext GWT: While not official, the most common pronunciation is
“e-x-t g-w-t,” which aligns with how most folks pronounce ExtJS and GWT.

Mixing Ext GWT and ExtJS: Ext GWT was designed to be used only with
GWT. Mixing other JavaScript libraries (even ExtJS) may cause unpredictable
results, and therefore isn’t recommended.

Licensing: Ext GWT is dual licensed and available under an open source GPL
v3 license, as well as a commercial license for those who don’t wish to, or can’t,
comply with GPL terms.

Native: Ext GWT is a 100 percent pure GWT solution, and the majority of the
browser page manipulation is conducted through GWT’s classes and methods.
Ext GWT is not just a thin wrapper around the existing ExtJS JavaScript library.

Supported browsers: Ext GWT supports all major web browsers, including
Internet Explorer 6+, FireFox 1.5+ (PC, Mac), Safari 3+, and Opera 9+ (PC,
Mac).

Like all GWT libraries, development with GXT is performed using the Java programming
language. While GXT is suited to web development, you won’t need any extensive knowledge
of HTML, cascading style sheets (CSS), or JavaScript, which is great for experienced enterprise
Java developers. If this is you, then you’ll be right at home building professional web
applications after only a small amount of time.

Like all GWT applications, GXT is compiled from Java source into JavaScript and combined
with HTML and CSS files to produce a self-contained web application. This process ensures
that your application code, and the GXT library itself, is tightly coupled and compiled using the
best-known JavaScript optimization techniques available for each individual browser. This
“compiling to JavaScript” approach can produce faster and more efficient JavaScript than you
can by hand—unless you have kung fu JavaScript skills, in which case you’re probably already
working for Google.

 Developing with Ext GWT 3

About GWT
Google released the first version of GWT in May 2006. Now at version 1.6, GWT has
considerable features that help create interactive web applications. An open source project,
released under an Apache 2.0 license, GWT is openly and actively developed by the Google
team. It has enjoyed ongoing support and development, with bug fixes and updates released
regularly.

Without doubt, GWT is a library designed to facilitate fast and efficient Ajax (asynchronous
JavaScript and XML) development. Unfortunately, on its own it falls short as a complete rich
Internet application toolkit, as it lacks rich widgets and an appropriate application framework.

Following is a short summary of these features:

 Full Java 5 language support (such as generics, enumerated types, annotations, etc.).

 A Java-to-JavaScript compiler with hosted mode emulation, allowing full support for Java
debugging.

 Browser independence—quirks and history management issues are dramatically reduced.

 Basic widget support for buttons; forms; elements; simple tables; and tree widgets, dialogs,
and panels.

 Support for a range of server integration and communication options (RPC, XML, or
JSON).

 JUnit testing support and integration.

 Internationalization language and locale support.

Note The terms Ajax and RIA are often used interchangeably to mean an interactive
web application, but I have decided to create a distinction whereby browser interactions alone
would not equate to a rich Internet application. Thus, Ajax is used to refer to the ability to
manipulate the contents of the browser, utilize the XMLHttpRequest object for server
asynchronous requests, and react to user input. RIA is used to refer to a more “desktop-like”
visual experience that leverages Ajax, combined with complex and enhanced widgets that can
also manipulate data and respond to user actions.

4 Developing with Ext GWT

BUT GWT HAS WIDGETS?
Yep, GWT comes with a bunch of really cool-sounding widgets: buttons, check
boxes, trees, tables, even an auto-complete suggest box. Unfortunately many
of these widgets look as boring as a cabbage soup diet. Visually, GWT widgets
look very drab and are a long way from what I’d call a “rich-looking” Internet
application. You also don’t get many configuration options with GWT on how to
manage and interact with widgets.

If you are trying to build an RIA and you only have access to the GWT library,
you need to use extensive CSS and gain access to a graphic artist. You also
need to spend twice as much time building widgets, testing them, and ensuring
they look right on all browsers.

This is not to say it’s impossible to build an RIA with GWT alone, just that your
task becomes a lot harder when you have to focus on building your application,
not designing widgets!

A sound knowledge of Java is required to successfully develop GWT applications, although you
will only need to use a subset of the Java API. In saying that, on the server side of your
application, you may need to construct a typical J2EE web framework, or find some alternative
web platform in another language that provides a similar degree of functionality. GWT (and
GXT) will happily support any server platform and language.

GWT provides emulated support for java.lang, java.util, and certain classes within java.io
and java.sql packages, but not for anything outside of this. As GWT compiles Java source into
JavaScript targeted to run in a browser, it wouldn’t make sense to support many of the advanced
Java API features such as advanced IO, networking, JDBC, and Swing packages. Using many
of the other aspects of the Java API (like reflection) is just not possible, as they would need to
be emulated in JavaScript.

Given that GWT is focused around producing web applications on a browser, most of what you
need to do is provided by the GWT packages.

GWT Crash Course
As GXT development is an extension of GWT, with advanced widgets and a complete
application framework, it is probably worthwhile to review how a GWT application works and
how it’s assembled. If you’re already familiar with GWT, you can skip this section and jump
straight to Chapter 2.

 Developing with Ext GWT 5

How Does It Work?
GWT applications start life as Java source code, and whether compiled or emulated by the
hosted mode shell, they are converted into an equivalent JavaScript application. These
JavaScript applications are monolithic, meaning they execute as a single application, and do not
require access to a web server to interact with the user. This is dramatically different from
normal web applications that constantly refresh the browser’s page, requesting further content
as the user interacts with the application.

Thinking back to traditional web applications, a user requests a page and the server responds
with a dynamically generated page response. As the user interacts with the web site, there are
multiple page requests and subsequent delays as the user has to wait for the server to respond.
The web application is constructed using multiple pages, with each functional part of the
application served as a dynamic page and sent to the browser.

When using GWT, the entire application can be loaded at once, and all interaction is performed
without requiring further requests to and from the server. GWT manipulates the underlying
browser Document Object Model (DOM) using JavaScript to dynamically render a page and
add and adjust various widgets (buttons, fields, tables, etc.). User interaction events are
detected, and this allows the application to update the DOM and respond with the results. If no
data needs to be persisted, the entire web application can be served to the user’s browser
without any further server requests.

Tip It’s worth seeing firsthand how powerful it can be to build a web application that
doesn’t need to always contact the web server for user interaction. A popular GWT game,
GSudokr (http://www.gsudokr.com), is a good example where the entire application is loaded
and all interaction occurs without any further server requests.

When data needs to be sent or retrieved from the server, GWT applications communicate with
servers asynchronously (meaning without disrupting end-user interactions). This ability to
interact with the user without waiting on the server, and still being able to request and save data
back again, is a fundamental Ajax feature.

GWT provides this server communication using Remote Procedure Call (RPC). RPC provides a
seamless solution that allows Java objects to be passed between server and client. The use of
RPC allows both client and server to be developed as a single Java application. RPC removes
the need for object transformation, as plain old Java objects (POJOs) can be serialized and
transferred to and from the client.

http://www.gsudokr.com

6 Developing with Ext GWT

Alternatively, GWT also offers support for XML and JSON data, for when you need to interact
with non-Java web servers, or don’t wish to use RPC in an existing Java web application.

How Is It Developed?
During normal development, you will often want to run and test various aspects of the
application to ensure the code is working as expected. To avoid a continuous recompiling, GWT
includes a combined “browser client and web server” shell that interprets the Java code in real
time and interacts with the DOM, thus simulating what would occur when compiled.

This emulated browser and server mode is simply called hosted mode. You will spend most of
your development time in hosted mode. When final JavaScript deployment is required, you
compile and run the final web application in a normal browser; this is commonly called web
mode.

Tip Hosted mode actually uses a native browser to render, so any browser quirks in
hosted mode might show differently when run in web mode on another browser. For example,
on Windows platforms, the Internet Explorer browser is plugged into the hosted mode shell. On
rare occasions, it is possible that issues may not show up until the application is tested on
another browser in web mode. In saying that, GXT does a pretty good job of ensuring all
widgets behave the same way across all supported browsers, so coding can be reliably
preformed in hosted mode with final testing for all browsers left to web mode.

One significant benefit of working in hosted mode is that you can code-test-debug your
application all in a Java development environment along with your favorite Java debugger. You
can step right through the code, seeing the results and changes appear, right in the browser. This
approach provides a rapid development process and limits the need to compile the entire
application until you are ready to build a release and perform extensive browser testing.

How Is It Deployed?
GWT requires Java source code and files to be organized and structured a particular way, and
I’ll cover this in the next chapter. As a way of introduction, GWT expects to find Java source
files in a package name that includes .client. in the full package name. An XML document
(called a GWT module file) must exist that identifies an entry point for where the application
begins, and your public resource files are expected to exist either in the war folder or in the
.public. package.

 Developing with Ext GWT 7

All this is done to ensure the GWT compiler can resolve dependencies, compile, and link your
project into a set of JavaScript, CSS, HTML, and resource files (images, etc.). Luckily, GWT
includes a few application and project setup scripts to help create this required file structure, and
automatically builds source templates to get you started quickly.

The entire compile process parses the source files, generates the required output, and assembles
them as a matched set of output files so that they can be hosted and served without further
postproduction effort. If you don’t communicate with the server, you can now deploy this set of
web files onto any web server or just run them locally; it’s just static HTML, JavaScript, and
resource files.

If you are using GWT RPC, then you’ll need to bundle up your server-side classes and deploy
to any Java-compatible servlet container. Obviously, on the server side of things, it can get a
little more complex, but essentially for GWT, most of the requirements are simple and will be
covered in full detail in later chapters.

Note GWT requires a paradigm shift from traditional web application design. Typically,
in most web applications, the developer or web framework must ensure the application state is
managed as part of a web server task. Pages are requested and refreshed upon every client
application state change, and these round-trip requests need to be managed as part of the web
server application state. This web server task is not required for GWT applications; the
application state is 100 percent client side and does not require interaction with a web server.

Rethinking is required for those who come from a web application background. Don’t design
your rich Internet application like a traditional web application.

Summary
With this overview of GXT and GWT behind you, you should now have a good understanding
of what to expect out of each library and toolkit. You have also been given a quick refresh and
introduction to how GWT works, what to expect when you start developing, and how things
will be deployed.

The next chapter will assist you with what you’ll need to get started with GXT, ensuring your
development environment is ready to begin development and testing, and what you can do to
help with final deployment.

 Developing with Ext GWT 9

Chapter 2: Organizing the Environment
Organizing your development environment for GXT is no different than preparing for GWT
development. There are only a few additional steps beyond basic GWT preparation to ensure
the GXT library is included in the development and build processes. This chapter will take you
through understanding the basic ingredients, show you how to set up and prepare the Eclipse
IDE, and leave you with a skeleton project structure that can be used to start any rich Internet
application (RIA) development.

The Basic Ingredients
Building RIAs with GXT requires some fresh ingredients that you can simply download and
mix together to produce a delicious RIA cake (mmm, so very tasty). GWT takes advantage of
Java and its extensive range of tools, and so the list of items in Table 2-1 includes Java and the
common development tools used in conjunction with GXT.

Throughout this book I’ll be providing code listings that have all been tested against the
versions of tools and libraries outlined here. To ensure you don’t run into any unforeseen issues,
please download and install at least these versions (or later), unless you are confident you can
sort out the differences yourself.

Table 2-1. The List of Items You’ll Need to Download

DOWNLOAD DESCRIPTION WEB SITE

JDK6
The Java SE Development Kit (JDK)
includes the Java runtime and command-
line development tools.

http://java.sun.com

Eclipse 3.4.1
The Eclipse IDE includes a Java compiler,
debugger, syntax highlighting editor, and
other various plug-ins and tools.

http://www.eclipse.org

GWT 1.6
The Google Web Toolkit includes a hosted
mode shell, Java-to-JavaScript compiler,
setup scripts, and the GWT library.

http://code.google.com/web
toolkit/

GXT 2.0 The GXT framework includes a source, a
compiled library, and examples.

http://www.extjs.com/
products/gxt/

http://java.sun.com
http://www.eclipse.org
http://code.google.com/web
http://www.extjs.com/

10 Developing with Ext GWT

Tip Eclipse includes bundled Ant and CVS/SVN support and does not require
specifically downloading those popular tools. Eclipse is also available in a version for Java EE
developers. This Java EE version includes support for J2EE features and common web
development tasks, such as cascading style sheets (CSS) and HTML editors. While not
mandatory for RIA development, you’ll probably appreciate the benefit of having these extra
tools.

GWT provides out-of-the-box support for creating Eclipse projects. Technically, you can use
any Java development environment, but I’ve decided to focus on Eclipse as the tool of choice.
I’m using the Windows platform for development, but you should be able to use any of the
supported GWT platforms.

Setting Up Eclipse
Before I begin creating our first GXT project, I need to configure a few things within Eclipse
that will make working with GXT a little easier.

The only preliminary requirement is to install the Java software development kit (SDK) and
unzip Eclipse, GWT, and GXT. I’ll assume you’re able to do this without instructions and that
you have verified that Eclipse can run, compile, and debug a normal Java project. If you’re
unable to get this working, then you should really solve this problem before continuing.

Defining User Libraries
Both GWT and GXT JAR files need to be added to the Java build path within any project. A
good way of doing this is to create an Eclipse user library. In Eclipse, choose Window
Preferences. In the Java section, choose Build Path and then User Libraries.

You should now create two new user libraries, the first titled GWT_1_6 for GWT and the second
titled GXT_2_0 for GXT. Now add the associated JAR files for each library (two for GWT and
just one for GXT). When completed, the user libraries you have defined should be similar to
those shown in Figure 2-1.

 Developing with Ext GWT 11

Figure 2-1. GWT and GXT user libraries defined

Tip If you intend to build and run GWT applications outside of Eclipse, you’ll probably
need a simple way to add those JAR files to any project classpath. The best way is via your
platform’s system environment variables, so you may wish to create something like GWT_HOME
and GXT_HOME. It’s also worthwhile to add the GWT_HOME path location to the system path so that
you can easily use the command-line tools.

Creating an Application
To begin any project, you’ll need to organize and structure a few files, directories, and
configuration options. GWT includes some scripts that automatically do this for you and also
populate your application with template code that acts as a good starting point for development.

To begin, create an Eclipse project with the GWT command tool webAppCreator. This tool will
create the required project files that can be imported into Eclipse. This is a fairly simple tool,
and all command options are shown in Table 2-2.

12 Developing with Ext GWT

Table 2-2. The webAppCreator Command Options

OPTION DESCRIPTION

-out The directory to write output files into (defaults to current)

-overwrite Overwrite any existing files

-ignore Ignore any existing files; do not overwrite

moduleName The name of the module to create (fully qualified Java class name)

As an example, the following command creates GWT files for an Eclipse project called myApp,
and puts them in a directory called myApp:
webAppCreator -out myApp com.apress.MyApp

Importing to Eclipse
Now that your project and application have been created, you can import them into the Eclipse
workspace. Choose File Import, and then select Existing Projects into Workspace. Choose
the myApp folder, and click Finish.

You should now have a GWT application project within Eclipse that you can launch and test.
To launch the GWT application, open the project, find the MyApp.launch file, and right-click it.
Then choose Run As MyApp, and you should see the GWT hosted mode shell, similar to
Figure 2-2.

Figure 2-2. Hosted mode shell running GWT MyApp

 Developing with Ext GWT 13

Adjusting for GXT
The preceding sections established a GWT application project, and now the final step is to
adjust a few things to accommodate GXT. This primarily involves some minor changes to the
gwt.xml module file, cleaning up the HTML file, copying resources, and including a JAR
library file.

Including the Libraries
You’ll need to ensure the GXT library (GXT_2_0) is included in both the build path of the project
and the classpath of the launch configuration.

1. Build path: Right-click the MyApp project and choose Properties. Click Java Build Path.
Under the Libraries tab, add a Library, choose User Library, and then select the GXT_2_0
library. You can also remove the GWT JAR files and add the GWT_1_6 user library.

2. Classpath: Right-click the MyApp.launch file, and choose Run As Run Configurations.
Ensure the MyApp.launch file is selected. Under Classpath, select User Entries, and then
click Advanced. Choose Add Library, and then select the GXT_2_0 library. You can also
remove the GWT JAR files and add the GWT_1_6 user library, as shown in Figure 2-3.

Figure 2-3. Configuring the classpath for the MyApp.launch file

14 Developing with Ext GWT

Caution It is easy to get all these classpath requirements mixed up and confused, so take
care when removing and adding things. Remember that GWT requires a path to source files,
not just compiled class files—that is why all GWT JAR files contain source code as well as
compiled class files.

So, if you add another GWT project to the path, you’ll also need to ensure the source folder is
included, something that isn’t so obvious when you’re trying to figure out why the GWT shell
won’t run.

Changing the GWT Module File
You now need to update the project’s module file (MyApp.gwt.xml), located in the com.apress
package, and tell GWT to inherit the GXT library file. The webAppCreator adds a few extra
items in the module xml file that you won’t need for a basic GXT application. After you add the
GXT module inheritance and strip out the unnecessary lines, the module file looks as follows:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE module PUBLIC "-//Google Inc.//DTD Google Web Toolkit 1.6.1//EN"
"http://google-web-toolkit.googlecode.com
/svn/tags/1.6.1/distro-source/core/src/gwt-module.dtd">
<module rename-to='myapp'>
 <inherits name='com.extjs.gxt.ui.GXT'/>
 <entry-point class='com.apress.client.MyApp'/>
</module>

Note The GXT module file will inherit all the needed GWT libraries, so you don’t have
to include them in your project’s module xml file. There is nothing wrong with keeping them, but
to keep it nice and simple, it is OK to remove them here.

Cleaning Up the HTML Host File
The next task is to ensure the HTML file is organized to support GXT. In GWT 1.6, the HTML
file is located in the root of the war folder.

For GXT, you should ensure the correct doctype is defined and that you’re including all the
needed style sheets.

http://google-web-toolkit.googlecode.com/svn/tags/1.6.1/distro-source/core/src/gwt-module.dtd
http://google-web-toolkit.googlecode.com/svn/tags/1.6.1/distro-source/core/src/gwt-module.dtd

 Developing with Ext GWT 15

 Ensure the following doctype is defined:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

 Add the following style sheets to your host page:
<link rel="stylesheet" type="text/css" href="css/ext-all.css" />

Note To ensure the widgets are rendered correctly, GXT requires the browser to be in
quirks mode (as opposed to the stricter standard mode). See
http://en.wikipedia.org/wiki/Quirks_mode for more information on the various browser-
rendering modes.

Once again you can trim out all the unnecessary lines within the HTML host file. When
completed, your HTML file will look similar to Listing 2-1.

Listing 2-1. MyApp.html
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
 <head>
 <link type="text/css" rel="stylesheet" href="MyApp.css">
 <link type="text/css" rel="stylesheet" href="css/gxt-all.css" />
 <title>MyApp</title>
 <script type="text/javascript" language="javascript"
src="myapp/myapp.nocache.js"></script>
 </head>
 <body>
 </body>
</html>

Copying Resources
The final task is to copy the resources from the GXT download into your war folder. As we used
the path of gxt with the style sheet paths, you’ll need to copy these CSS files and image
resources into the war/gxt folder.

http://en.wikipedia.org/wiki/Quirks_mode

16 Developing with Ext GWT

Tip When developing large GWT applications, you may need to ensure the Java VM
has enough memory to compile. To ensure this, set the VM arguments in the launch
configuration to –Xmx512M –Xss64m. This will give 512MB of memory to the heap and 64MB to
the stack, which should be enough for most medium RIAs. Obviously, larger applications may
need more to compile.

My First GXT App
The template Java source code created by the webAppCreator GWT tool obviously doesn’t
create any GXT widgets. To test that everything is working, you’ll need to add some code that
is purely GXT.

Listing 2-2 places a button onto the page. When you click the button, an alert message box
shows.

Listing 2-2. MyApp.java
package com.apress.client;

import com.extjs.gxt.ui.client.event.*;
import com.extjs.gxt.ui.client.widget.MessageBox;
import com.extjs.gxt.ui.client.widget.button.Button;
import com.google.gwt.core.client.EntryPoint;
import com.google.gwt.user.client.ui.RootPanel;

public class MyApp implements EntryPoint {
 public void onModuleLoad() {
 Button b = new Button("Click me...");
 SelectionListener< ButtonEvent> sl;
 sl = new SelectionListener<ButtonEvent>() {
 public void componentSelected(ButtonEventce) {
 MessageBox.alert("Button Pressed",
 "You pressed the button", null);
 }
 };
 b.addSelectionListener(sl);
 RootPanel.get().add(b);
 }
}

After applying these changes to the source code, you should be able to run the application and
get a result similar to Figure 2-4.

 Developing with Ext GWT 17

Figure 2-4. Hosted mode shell running GXT MyApp

Summary
Like all building projects, taking the time to set up your tools and prepare your working
environment often pays dividends in the end. After reading this chapter, you know the tools
needed and the steps required to organize the development environment for GXT. As a nice
bonus, you have built and launched your first GXT application. Awesome—only the second
chapter, and you’ve built a rich Internet application. Told you it was easy!

Chapter 3 covers the large number of widgets, how to use them, and some tips and tricks. You’ll
also get a chance to add theme support to give your applications that unique and styled look.

 Developing with Ext GWT 19

Chapter 3: Widgets, Widgets, Everywhere
Like any library intended to help build rich Internet applications (RIAs), having an extensive
range of widgets is highly desirable. True to its cause, GXT packs plenty of RIA goodness—
more than 10 separate packages with over 210 classes dedicated to widgets. Each widget is rich
with configurable options and comes theme-ready, allowing you to pick from the many
available themes or design your own look to match your needs. Figure 3-1 illustrates the online
Explorer demo, which showcases many of the available widgets and is a good way to
understand what is possible with GXT.

Figure 3-1. Explorer showcasing some of the GXT widgets

This is the chapter where you will be spending most of your time, learning about the widgets,
how to use them, and what is possible. I’ll start with an overview of all the widgets and then
cover code listings for most of the common widgets. I’ll also outline any tricks or important
gotchas you’ll face when developing an application.

20 Developing with Ext GWT

The Complete Ext-ended Family
All widgets are found in the com.extjs.gxt.ui.client.widget package and are structurally
grouped as outlined in Figure 3-2.

Figure 3-2. GXT’s extensive library of widgets

 Developing with Ext GWT 21

THE SOURCE CODE
This book comes with all the code used in the listings and examples ready to
run. The GWT module called CodeSnippet contains all the utility methods used
throughout the book and a list of all the code listing methods for each chapter.
Each chapter’s code listings are bundled together into a chapter class, such as
Chapter3. If you set up the GWT_1_6 and GXT_2_0 user libraries correctly within
Eclipse, you should be able to just launch the CodeSnippet file.

All of the code listing methods are commented so that they can’t all run at once.
You only need to uncomment one of the methods to see the listing in action.
Remember to uncomment only one method at a time, or strange things could
happen!

Chapter 6 pulls the things shown in this book into a complete and functional
application. The application builds on top of the MyApp module, with some
changes made to various configuration files to ensure the application looks and
behaves as expected. These changes are also explained.

.widget
The base package, com.extjs.gxt.ui.client.widget, is where most of the base component
classes, containers, and general-purpose widgets are found. You would typically start your
application with one of the many widgets found in this package.

Component
All GXT widgets use Component as their base class and either extend Component directly or
extend BoxComponent if they need support for sizing or positioning. All subclasses of
Component can automatically participate in the standard GXT Component life cycle of creation
(attach and detach). They also have automatic support for basic hide/show and enable/disable
behavior. Component allows any subclass to use lazy rendering into any GXT Container. GXT
Containers render children when the layout executes. In some cases, this will only render the
visible widgets that are active.

Component itself extends the GWT Widget object, and this allows you to insert and use GXT
widgets in GWT applications. Components added to a GWT Panel will be rendered when
inserted.

22 Developing with Ext GWT

Component handles all the life-cycle aspects of widget creation, attaching and detaching from
the Document Object Model (DOM). Component also provides all the basic support for things
like lazy rendering, tool tips, hide/show, and enable/disable.

An important aspect of Component (and every widget) is the wrapped El instance you can
obtain via the el() method. An El represents an element in the DOM. Using El, you can change
style information and adjust size, position, and many other attributes of the element representing
the widget. El is similar to GWT’s Element and provides a bunch of utility methods for DOM
manipulation; think of it like Element on steroids.

How Things Are Rendered
Rendering a widget in GXT is slightly different than in GWT.

In GWT, when a widget is created, usually while calling setElement(Element), it is inserted
into the DOM. This occurs when an element is added to a GWT Panel.

A GXT widget is constructed (or rendered) when the onRender method is called. In a GXT
Container, this occurs at layout. In a GWT Panel, this occurs immediately (like with GWT
widgets).

DEALING WITH RENDERING ISSUES
When you’re developing rich Internet applications, you may occasionally be
faced with rendering issues where it is hard to uncover the root cause of the
problem. Sometimes it’s the way you applied the widgets or the order of styles,
or you may have simply discovered a bug that nobody else has yet to see—all
of which can be hard to work out without knowing exactly what the browser is
being asked to do. As such, you are going to need a debug tool that can tell you
what exact style or HTML code is being applied to the DOM.

While working in web mode, you can use the Firebug add-on within Firefox or
the IE Developer Toolbar add-on for Internet Explorer. Using these tools, you
can see what style is being applied and what HTML is being rendered.
Unfortunately, there is no hosted-mode tool available, so you need to compile
to web mode within GWT to use these browser-based debug tools.

I strongly recommend you always have Firebug or the IE Developer Toolbar
handy and ready to test any rendering problems associated with GXT. Firebug
can be downloaded from http://getfirebug.com/.

Another important aspect in the rendering process is that some widgets have pre-render
attributes. Pre-render attributes set some visual aspect or feature that needs to be defined before

http://getfirebug.com/

 Developing with Ext GWT 23

the widget is rendered. Methods that require setting pre-render attributes are identified as having
the pre-render keyword in their Javadocs.

Events
Events are used throughout GXT to provide the programmer with notifications of the changing
state of widgets and user interactions, and as responses to server communications. The event
model used should be fairly familiar to any seasoned Java programmer. The typical Observer
pattern is used, whereby you add listeners to particular events, and when the event is triggered,
the listeners are notified to handle the event.

An entire package, com.extjs.gxt.ui.client.event, is dedicated to all the base event and
listener classes.

Component provides an addListener method as a starting point for all events used within GXT,
and also fires associated events based on the widget life cycle and state changes. Some widgets
provide additional convenience methods for adding specific event listeners. You can also add
these listeners by using Component’s addListener method with the correct event type.

Tip The list of events for each widget can be found in the Javadocs that show the
events that will be fired by the widget’s superclass.

All events extend BaseEvent and, depending on the type of event, support a setCancelled
method that can be used to cancel an event and its associated action. As an example, if you add
a listener for a window’s BeforeHide event, when setCancelled(true) is set on the
WindowEvent, the window’s hide() call will be cancelled. The window will continue to show
even though the user successfully clicked the close-window button that normally hides the
window from view.

Sinking Events
In GWT, if you are creating a widget, you need to sink the events you are interested in
receiving. There is a long and complex explanation for why this has been designed this way, but
the short answer is, to avoid memory leaks.

As GXT is an extension of GWT, you need to sink events for widgets that don’t have support
for the events you are interested in. So if you want an Html widget to respond to mouse-over
events, you need to sink the event before it starts receiving those browser events. As GXT
doesn’t attach to the DOM until after rendering, you need to sink events during (or after) the
rendering process. Listing 3-1 shows the process for sinking all mouse events.

24 Developing with Ext GWT

Listing 3-1. Sink Events
Html text = new Html("I will highlight on hover") {
 protected void onRender(Element target, int index) {
 super.onRender(target, index);
 el().addEventsSunk(Event.MOUSEEVENTS);
 }
};

Listener<BaseEvent> listener;
listener = new Listener<BaseEvent>() {
 public void handleEvent(BaseEvent be) {
 Html h = (Html) be.getSource();
 int b = h.el().getIntStyleAttribute("fontWeight");
 b = b == 900 ? 100 : 900;
 h.setIntStyleAttribute("fontWeight", b);
 }
};

text.addListener(Events.OnMouseOver, listener);
text.addListener(Events.OnMouseOut, listener);
text.setPagePosition(20, 20);
RootPanel.get().add(text);

In Listing 3-1, I first create an Html widget, and then using Java’s inner class support, override
the onRender method. After calling super, I grab an instance of the wrapped El to add the
MOUSEEVENTS event to the element’s existing sunk events.

Next, it’s a simple case of creating and adding a listener that toggles between two font-weight
styles and then adding the listener for both OnMouseOver and OnMouseOut.

Note Even though the correct CSS property is font-weight, JavaScript requires all
properties to be in CamelCase. This means that instead of using a hyphen to separate the parts
of the identifier, you capitalize the first letter after where the hyphen would have been, which is
why the style attribute is fontWeight.

Container
Containers are widgets that contain child components. Internally, containers handle the life-
cycle needs of their children, creating, attaching, and detaching as needed. Containers also
manage all positioning and size requirements for their children. Examples of widgets that are
containers are ButtonBar, HtmlContainer, Menu, Portal, Table, TabPanel, ToolBar, and Tree.

 Developing with Ext GWT 25

LayoutContainer
LayoutContainer is the base container for GXT that other containers extend to inherit
“automatic layout” capability. One of the core capabilities of LayoutContainer is its ability to
use various layout managers that will size and position child widgets in different ways.

The default layout manager for LayoutContainer is FlowLayout, which provides a normal
HTML flow (the first widget starts at the top left and each widget is then added downwards). A
range of layout managers is available, and I’ll cover them all in Chapter 4.

At this stage, I will simply introduce LayoutContainer. Listing 3-2 demonstrates how to create a
container that contains a widget and attaches it to a GWT RootPanel.

Listing 3-2. LayoutContainer
LayoutContainer container = new LayoutContainer();
container.add(new Button("Click Me"));
container.setSize(300,300);
container.setBorders(true);
RootPanel.get().add(container);
container.layout();

Unless LayoutContainer is placed within an existing container (with an appropriate layout
manager), you must size the container and call layout() to render its children, as I have done in
Listing 3-2.

Tip By default, LayoutContainer has no appearance; therefore, it is hard to determine
visually where its boundaries exist. Enabling a LayoutContainer’s borders using
setBorders(true) can be very helpful, as the outline of the container shows when rendered.
When you can see the borders, you can understand better how a layout is being rendered.

HorizontalPanel and VerticalPanel
HorizontalPanel and VerticalPanel provide built-in layout functionality using an internal HTML
table. These containers are basically convenience classes to assist with simplifying the layout
steps.

 HorizontalPanel: Lays out its children in a single row using TableRowLayout

 VerticalPanel: Lays out its children in a single column using TableLayout

In Listing 3-3, I’ve added a Label widget to the HorizontalPanel but also included a layout hint,
known as layout data. This layout data hint for TableLayout is, not surprisingly, called

26 Developing with Ext GWT

TableData and can inform the layout manager that you want to align the cell content a particular
way. In this case, I will inform the layout manager to align the cell horizontally to the right.

Listing 3-3. HorizontalPanel
HorizontalPanel hp = new HorizontalPanel();
hp.setWidth(300);
hp.setTableWidth("100%");
hp.add(new Label("Aligned Center"));
TableData td = new TableData();
td.setHorizontalAlign(HorizontalAlignment.RIGHT);
hp.add(new Label("Aligned Right"), td);
RootPanel.get().add(hp);

Layout managers use layout data hints when the layout executes. These hints can provide
additional size, margin, and position information about the child widget (just like Listing 3-3
uses TableData to advise the layout manager that the cell should align content to the right).
You’ll see more of these layout data hints as we progress, and we’ll cover this concept further in
Chapter 4.

ContentPanel
This container has functionality and structural components that make it the perfect building
block for application-oriented user interfaces. It contains button bars, support for top and
bottom components, and separate header, footer, and body sections. The panel’s header supports
an icon, text, and buttons. The panel’s body can be expanded and collapsed.

ContentPanel, like LayoutContainer, needs to be sized unless it is placed into a container with
an appropriate layout. An example ContentPanel container is shown in Figure 3-3.

Figure 3-3. ContentPanel example

 Developing with Ext GWT 27

To get the body text of the ContentPanel to look just like Figure 3-3, I need to add a few styles
to our application’s web page. If you’re using the MyApp example created in Chapter 2, then
edit the MyApp.css file located along with your HTML file. The GWT webAppCreator tool
created this file, and it will be full of GWT-specific content. Since we won’t be using any of the
existing content, remove all lines so the file is empty.

Add the following lines, and ensure your MyApp.css file looks similar. We’ll continue to add
content to this CSS file in Chapter 6, when we implement a full application example.
* {
 font-family: arial, helvetica, tahoma, sans-serif;
}

.text {
 font-size: 12px;
}

The first style sets all styles to use the font families found in the order I’ve specified. The
second style sets the size of text to 12 point.

Apart from adding style information within a CSS resource file, you can also add style
information directly to certain aspects of the rendered widget. Listing 3-4 demonstrates both
methods.

Listing 3-4. ContentPanel
ContentPanel cp = new ContentPanel();
cp.setHeading("Folder Contents");
cp.setBounds(10, 10, 250, 140);
cp.setCollapsible(true);
cp.setFrame(true);
cp.setBodyStyle("backgroundColor: white;");
cp.getHeader().addTool(new ToolButton("x-tool-gear"));
cp.getHeader().addTool(new ToolButton("x-tool-close"));
cp.addText(getBogusText());
cp.addButton(new Button("Ok"));
cp.setIconStyle("tree-folder-open");
RootPanel.get().add(cp);
cp.layout();

Tip While it is generally bad practice to embed style information within GWT source
code, if you do wish to temporarily do this, remember this tip: all CSS properties must be in
CamelCase. For example, “background-color: white” needs to be “backgroundColor: white”.

28 Developing with Ext GWT

There are quite a few new concepts in this Listing 3-4. Here is a quick outline of the methods
used and what they do:

 setHeading: Sets the title of the panel’s heading.

 setCollapsible: Enables/disables the collapsible feature and the associated header icon.
This can also be used with setAnimCollapse to control the animated slide-in/out effect.

 setFrame: Enables/disables a rendering effect of custom rounded borders and a colored
background. Otherwise, borders are square and 1 pixel in width.

 setBodyStyle: Allows you to specify CSS style information for the internal body section of
the panel. All attributes must be in lower camel case.

 getHeader().addTool: Allows you to modify the panel’s header to add prebuilt or custom
tool items. I’ll provide more detail on tool buttons later in the chapter.

 addText: A convenience method that creates an Html widget and adds it to the panel. You
can insert any valid HTML fragment.

 addButton: Another convenience method that adds a button to a button bar located within
the footer of the panel.

 setIconStyle: Lets you provide an image that will be rendered as part of the panel’s header
icon. The icon style is a CSS element that essentially contains the URL location of the
image file. In Listing 3-4, I grabbed the icon style from the GXT library.

DO I NEED TO MESS WITH CSS?
You might be wondering if you need to know a lot about CSS or if you can build
a web application without having to know much at all about web styles.

While it is not mandatory to delve deeply into CSS with GXT, if you do
customize some style elements, you can get some neat results. For example,
you can provide subtle adjustments to color, size, padding, or margins that
improve the visual aspect of your rich Internet application.

Ultimately, how much you focus on custom styles is up to you. At the extreme
end, you can even build your own custom theme containing styles and images
tailored to suit your organization’s own look and feel.

 Developing with Ext GWT 29

Viewport
Viewport is a LayoutContainer that fills the browser’s window and monitors window resizing.
When the browser window is resized, Viewport executes its layout, causing children to resize
and adjust to the new window dimensions. Listing 3-5 shows Viewport’s syntax.

Listing 3-5. Viewport
Viewport viewport = new Viewport();
viewport.add(new ContentPanel(), new MarginData(10));
RootPanel.get().add(viewport);

As Viewport extends LayoutContainer, and therefore inherits LayoutContainer’s functionality,
you will notice the use of another layout data hint, MarginData, which informs the layout to add
a 10-pixel margin to the ContentPanel.

Unlike LayoutContainer, Viewport automatically executes its layout when the application is
started. You simply add Viewport to RootPanel, and Viewport handles the rest. As such,
Viewport is often used as the topmost widget when building an application that can adjust to
various window sizes.

Window and Dialog
The Window widget provides a floating container that offers similar functionality to windows
you would find in standard desktop user interfaces. Windows can be modal, shown and hidden,
and maximized and restored. As it extends ContentPanel, Window offers all the same visual and
functional features found in ContentPanel.

Unlike ContentPanel, you don’t add Window to a Container (or RootPanel). When Window’s
show() method is called, Window adds itself to the DOM, sets its z-index to be the topmost
item, and makes itself visible. At this time, Window also executes its layout and centers itself
within the current view.

If you intend to reuse Window, you should hide instead of close it, as closing releases all
resources and requires you to re-create the Window if you need to show it again. Listing 3-6
shows Window’s syntax.

30 Developing with Ext GWT

Listing 3-6. Window
Window w = new Window();
w.setHeading("Product Information");
w.setModal(true);
w.setSize(600, 400);
w.setMaximizable(true);
w.setToolTip("The GXT product page...");
w.setUrl("http://www.extjs.com/products/gxt");
w.show();

In Listing 3-6, you’ll notice the use of the setUrl method, which adds an IFrame and displays
content from the specified URL. The GWT hosted shell will alert you to a security risk, which
is a result of the content coming from outside the hosted shell’s environment.

Dialog simply extends Window and adds support for buttons and a few extra convenience
methods for handling them. You would typically use Dialog as a convenient way to build a
window with OK/Cancel/Yes/No buttons. Listing 3-7 demonstrates the use of buttons and the
optional HideOnButtonClick method, which hides the dialog after the user clicks the button.

Listing 3-7. Dialog
Dialog d = new Dialog();
d.setHeading("Exit Warning!");
d.addText("Do you wish to save before exiting?");
d.setBodyStyle("fontSize:14px;fontWeight:bold;padding:13px;");
d.setSize(300, 120);
d.setHideOnButtonClick(true);
d.setButtons(Dialog.YESNOCANCEL);
d.show();

The setButtons convenience method in Listing 3-7 provides a quick way to create a dialog with
Yes, No, and Cancel buttons added and positioned correctly.

Also, note the body styles that ensure the text weight is bold and the body padding is set to 13
pixels. In this example, it’s fairly straightforward to embed the styles in code, but in a real
production project you should consider adding this style information via CSS files to make it
easier to change and adjust styles without having to recompile your project.

MessageBox
A MessageBox component is similar in behavior to JavaScript’s window.alert() in that it pops
up a modal dialog, an associated icon, and a message requesting user input. Fundamentally,
MessageBox is a convenience class that builds and manipulates a Dialog component in a
defined way.

http://www.extjs.com/products/gxt

 Developing with Ext GWT 31

You saw an example of MessageBox in Chapter 2, and its use is fairly straightforward. One of
the interesting aspects of MessageBox (and this is no different than Window or Dialog) is that it
doesn’t halt JavaScript program execution, unlike JavaScript’s window.alert(), which does.
This provides some nice benefits and some potential pitfalls if you don’t consider the
implication of the nonblocking nature of Window and Dialog.

Because there is no halt to code execution, a common question is how to create the prompt “Are
you sure?” when a Window is closing. The solution is quite ingenious: use Event.
setCancelled(true) to stop the window from hiding, and then show the MessageBox. If the
user clicks Yes and wishes to continue to hide the window, I simply remove the listener that
would set setCancelled(true) against the event (and stop the hide), and then call
Window.hide() again. The hide won’t be stopped because the listener was removed.

Listing 3-8 demonstrates this solution, along with a typical use of MessageBox using the
confirm method to ask the user “Are you sure?”.

Listing 3-8. Window Close, AreYouSure?
final Window w = new Window();
w.setHeading("Close me...");
w.setSize(300, 200);
Listener wL = new Listener() {
 public void handleEvent(BaseEvent be) {
 be.setCancelled(true);
 Listener<MessageBoxEvent> cb;
 cb = new Listener<MessageBoxEvent>() {
 public void handleEvent(MessageBoxEvent mbe) {
 String id = mbe.getButtonClicked().getItemId();
 if (Dialog.YES == id) {
 w.removeAllListeners();
 w.hide();
 }
 }
 };
 MessageBox.confirm("Close?", "Are you sure?", cb);
 }
};
w.addListener(Events.BeforeHide, wL);
w.show();

In addition to confirm, MessageBox also has alert, which displays a single OK button and a
read-only message alerting the user, and prompt, which provides a text field for user input along
with OK and Cancel buttons. Optionally, you can also show a multiline prompt that uses a text
field to obtain more than a single line of text from the user.

32 Developing with Ext GWT

TabPanel and TabItem
A tabbed panel is now a popular user interface used within browsers. It allows different content
to be seen on the main viewing panel as each tab is selected. TabPanel is a container of
TabItems, and both are used together to achieve the same effect. An example TabPanel with
TabItems is shown in Figure 3-4.

Figure 3-4. TabPanel example

TabPanel can be configured with tabs at the top or bottom. When showing tabs on the top, you
can also set setEnableTabScroll to true. If more tabs exist than can be shown, TabPanel will
automatically scroll the tab header left or right as more tabs are added or removed.

Each TabItem supports a display icon and an optional Close button that removes the tab from
the panel when the user clicks it. TabItems can also be disabled. Listing 3-9 shows the TabPanel
and TabItem syntax.

Listing 3-9. TabPanel and TabItem
TabPanel tp = new TabPanel();
TabItem pti = new TabItem("Project");
pti.setIconStyle("tree-folder-open");
tp.add(pti);
tp.add(new TabItem("TabPanel.java"));
TabItem ti = new TabItem("TabItem.java");
ti.setClosable(true);
ti.setEnabled(false);
tp.add(ti);
tp.setBounds(10, 10, 300, 300);
RootPanel.get().add(tp);

 Developing with Ext GWT 33

Html and HtmlContainer
The Html widget allows you to inject HTML fragments. Using Html, you can inject HTML
wrapped in a tag of your choosing, or <div> if you don’t specify one. Listing 3-10 shows a few
simple HTML tags with text being added directly to RootPanel.

Listing 3-10. Html
Html h = new Html(
 "<div class=text style='padding:5px'>"
 + "<h1>Heading1</h1>"
 + "<i>Some text</i></br>"
 + "Some more text</br>"
 + "<u>Final text</u></div>");
RootPanel.get().add(h);

HtmlContainer provides a widget for HTML fragments, but wraps this functionality in a
container. Additionally, HtmlContainer supports loading HTML fragments from a URL or a
GWT RequestBuilder, as well as a supplied String. HtmlContainer also allows you to add other
widgets into the container by using a selector. Selectors are used to select elements in the
HTML. The selected elements are then used as targets for inserting the widget.

The following code snippet is the Fragment.html used in Listing 3-11. You’ll notice it contains
a td element with an ID of widget1.
<table>
 <tr>
 <td>This is a test.</td>
 </tr>
 <tr>
 <td id="widget1">This content is replaced.</td>
 </tr>
</table>

In Listing 3-11, a button is added to the container using that ID to target the insertion.

Listing 3-11. HtmlContainer
HtmlContainer hc = new HtmlContainer();
hc.setUrl("Fragment.html");
hc.setBorders(true);
hc.setBounds(10, 10, 200, 100);
Button button = new Button("Click Me");
hc.add(button, "#widget1");
RootPanel.get().add(container);

34 Developing with Ext GWT

Note When using Html or HtmlContainer, ensure that correct style information is being
used. HTML fragments are subject to the same style information as everything else, and that
might not always be what you want. In other words, you may need to apply specific styles to
your HTML fragments so that you avoid the general styles being applied from the ext-all.css
file.

ProgressBar
ProgressBars are a neat way to show progress when the user is waiting for some lengthy
operation to complete. A progress bar gives the user feedback about the operation still occurring
or how much further the operation will take to complete by showing a bar that progressively
grows from left to right as it updates.

There are two methods for using a progress bar. The first is when information is available to
show how much the operation has changed, and therefore the progress bar status can update at
various points in time. The second is when update information is not available to show, and so
the progress bar auto-updates continuously by itself. Listing 3-13 demonstrates the first method,
as it’s a little more involved, and some GWT timer code as well.

Listing 3-13. ProgressBar
final ProgressBar bar = new ProgressBar();
bar.setBounds(10, 10, 200, Style.DEFAULT);
Timer t = new Timer() {
 int val = 0;

 public void run() {
 if (val == 10) {
 bar.updateProgress(1, "Completed");
 } else {
 val++;
 String status = (val * 10) + "% Complete"
 status +=” (Task " + val / 2 + " of 5)";
 bar.updateProgress(val / 10.0, status);
 this.schedule(500);
 }
 }
};
t.schedule(1000);
RootPanel.get().add(bar);

 Developing with Ext GWT 35

Listing 3-13 utilizes the GWT Timer class, which is set to run first in 1,000 ms and then to
execute every 500 ms. When the run() method is executed by Timer, it checks to see if val has
reached 10. If not, the method increments val and then builds a string to display within the
progress bar. Finally, the updateProgress method is called with a percentage value, and the
display string and timer are scheduled to run again.

You’ll notice that updateProgress requires a double value less than 1.0 to reflect the percentage
of the progress bar to be shown (0.0 equals 0% and shows no bar, and 1.0 equals 100% and
shows the entire bar).

Tip In Listing 3-13, we sized and positioned the progress bar using setBounds, and
set the Style.DEFAULT for the height of the widget. This default value can be applied to any
widget to allow natural sizing.

Slider
Another neat way to manipulate data is with the Slider widget. Slider is best used when you
need the user to adjust the value of some item between a range of values—much simpler than
entering values or selecting from a list. Slider, shown in Figure 3-5, is a natural user control for
quickly adjusting values.

Figure 3-5. Slider example

Slider is very simple to use. Set up the minimum and maximum values, the increment amount
and starting value, and optionally a tool tip–styled message. The message string will replace the
{0} parameter with the current value of the slider.

Listing 3-14 puts this into action.

36 Developing with Ext GWT

Listing 3-14. Slider
Slider slider = new Slider();
slider.setBounds(10, 10, 200, Style.DEFAULT);
slider.setMinValue(1);
slider.setMaxValue(100);
slider.setIncrement(1);
slider.setValue(100);
slider.setMessage("Scale by {0}%");
RootPanel.get().add(slider);

DataList
DataList is a simple list with the capability to render text or HTML fragments as list items.
DataList also supports icons and individual styles. Listing 3-15 displays the same information as
Listing 3-16, but you’ll notice in Listing 3-15 that the data and rendering information are
combined within the list item text.

Listing 3-15. DataList
DataList dl = new DataList();
dl.add("SAAB 9000 <i>(1994)</i>");
dl.add("BMW 318i <i>(1999)</i>");
dl.add("VW Golf <i>(2001)</i>");
dl.add("Peugeot 307 <i>(2002)</i>");
dl.setBounds(10, 10, 160,60);
RootPanel.get().add(dl);
Listener listener = new Listener<DataListEvent>(){
 public void handleEvent(DataListEvent be) {
 DataListItem dli = be.getSelected().get(0);
 System.out.println(dli.getText());
 }
};
dl.addListener(Events.SelectionChange, listener);

A range of events is also fired relating to the selection and list modification, such as
add/remove. You listen for events by simply adding a Listener to DataList. All events fire a
DataListEvent and assign values to the appropriate fields, depending on the event. The Javadoc
for each event outlines this behavior.

Using DataList is very straightforward. There are no complex data setup requirements
compared to ListView (which is explained in the next section). While DataList is simpler, it has
the disadvantage of not really keeping the data and the view separated. For simple lists, this
isn’t an issue, but for more advanced list rendering, consider using ListView.

 Developing with Ext GWT 37

ListView
ListView is the first widget that utilizes the Store and Data packages. These utility packages are
used to assist in the local caching and representation of data models. These models are then
used by the view widgets (like ListView, Grid, etc.) to render and display data. I will go into a
lot more detail regarding the Store and Data APIs in Chapter 5.

In Listing 3-16, CarModel is a ModelData class that holds our car information. This class is used
by the widgets that use ModelData classes (BaseModel is derived from ModelData). Notice the
calls to set(name,value), which use a property name to identify the field and a value to store
the data. In Figure 3-6 and Listing 3-16, I use the property names car_make, car_model, and
car_year. I’ll also use this CarModel class throughout the book.

Listing 3-16. CarModel
public class CarModel extends BaseModel implements Serializable {
 private static final long serialVersionUID = 1L;
 public CarModel(String mk, String ml, Integer y) {
 set("car_make", mk);
 set("car_model", ml);
 set("car_year", y);
 }
}

As Figure 3-6 shows, ListView is a widget that is really handy for displaying a list of styled
data, similar to DataList, except that you can customize the style and rendering information
independently from the data. In ListView, your data models and rendering styles are defined
separately.

Figure 3-6. ListView example

ListView offers this capability through the use of a powerful templating system called
XTemplates. XTemplates provides an advanced way of rendering HTML and style information
that is closely coupled with data. I’ll cover XTemplates in Chapter 4.

Listing 3-17 uses the convenience method setSimpleTemplate, which requires you to list the
data element names surrounded by the HTML you wish to render per line. Under the hood, this

38 Developing with Ext GWT

method uses an XTemplate, but allows you to avoid having to know how it works for simple
examples.

Listing 3-17. ListView
ListStore<CarModel> store = new ListStore<CarModel>();
store.add(new CarModel("SAAB","9000",1994));
store.add(new CarModel("BMW","318i",1999));
store.add(new CarModel("VW","GOLF",2001));
store.add(new CarModel("Peugeot","307",2002));
ListView<CarModel> lv = new ListView<CarModel>();
lv.setStore(store);
lv.setSimpleTemplate(
 "{car_make} {car_model} <i>({car_year})</i>");
lv.setBounds(10, 10, 160,60);
RootPanel.get().add(lv);

.widget.button
Buttons are a fundamental user control of any user application and, as you’d expect, GXT has
solid support in this area. In this section I’ll cover the Button class and the various button
containers.

Buttons can be styled in numerous ways in any combination of the following:

 Scale: Support for small, medium, and large button styles

 Icon: Can be positioned either left, right, top, or bottom

 Arrow: Can be added to the right or on the bottom

Extended versions of Button, such as ToggleButton and SplitButton, provide additional
functionality. Figure 3-7 shows an example of the three scale sizes of SplitButton.

Figure 3-7. SplitButton example

 Developing with Ext GWT 39

Button, ToggleButton, and SplitButton
Button is a fairly obvious widget that doesn’t need explanation.

ToggleButton, like its namesake, is a button that can toggle its pushed state on and off. Think of
ToggleButton as similar to the Bold or Italic buttons shown in most rich text editors.

SplitButton, also like its namesake, is a button that has a split with an arrow (as shown in Figure
3-7) that can be clicked independently of the base button; normally, a contextual pop-up menu
shows. A common example is color pickers that show a selected color and then a pop-up color
table when the user clicks the split arrow.

All buttons have the ability to enable and disable, the ability to modify their displayed text, and
a method to set an icon to be displayed with or instead of text. As expected, you can add event
listeners to handle selection events. Listing 3-18 shows a “Click Me” button with an icon and
responds to events by showing a JavaScript alert when clicked.

Listing 3-18. Button
Button button = new Button("Click Me");
button.setIconStyle("my-icon");
button.setEnabled(true);
SelectionListener<ComponentEvent> sl = new
 SelectionListener<ComponentEvent>(){
 public void componentSelected(ComponentEvent ce) {
 Window.alert("clicked");
 }};
button.addSelectionListener(sl);
RootPanel.get().add(button);
RootPanel.get().add(new ToggleButton("Bold"));

In Listing 3-18, I added a custom icon by setting the icon style to my-icon. This style name is
defined in our application’s MyApp.css file.

The required format for an icon style is as follows:
.my-icon { background: url(images/icons/my-icon.png
) no-repeat center left !important; }

40 Developing with Ext GWT

WHY NO GWT IMAGE SUPPORT?
You may be wondering why GXT doesn’t support GWT’s Image class for adding
icons. The reason is that CSS is much more flexible. Where do you want to
store your image paths: in Java source code or in a separate CSS file that you
can update without having to recompile code?

A future release of GXT will add GWT ImageBundle support in most places that
take icons, so you’ll be able to decide what method you’d prefer to use. An
ImageBundle is a composition of many images into a single image, which can
reduce the overall number of connections and requests to the server for
resources.

Status
The Status widget is essentially a BoxComponent with the appropriate styling enabled to show
an indented box border or an animated rotating icon. These provide a range of status styles for
various purposes.

Status can be combined with ToolBar (introduced later in the chapter) to produce a typical-
looking status bar. Another common use of Status is to wrap it in a ButtonAdapter and add it to
the button bar of a ContentPanel. Used as a “please wait, I’m working” indicator, Status’s
setBusy method adds an icon along with the status text.

Both of these approaches are shown in Figure 3-8.

Figure 3-8. Status example

 Developing with Ext GWT 41

Listing 3-19 pulls together a few concepts already covered into a nice example.

Listing 3-19. Status
final ContentPanel cp = new ContentPanel();
cp.setHeading("Update Data");
cp.setBounds(10, 10, 350, 240);
cp.setButtonAlign(HorizontalAlignment.RIGHT);
cp.addText(CodeSnippet.DUMMY_TEXT_SHORT);

ToolBar topStatus = new ToolBar();
topStatus.add(new FillToolItem());

Status working = new Status();
working.setWidth(100);
working.setText("Working");
working.setBox(true);
topStatus.add(working);
topStatus.add(new LabelToolItem(" "));
Status remaining = new Status();
remaining.setWidth(150);
remaining.setText("10 Items Remaining");
remaining.setBox(true);
topStatus.add(remaining);
cp.setTopComponent(topStatus);

final Status saving = new Status();
saving.setBusy("Saving...");
saving.hide();
saving.setAutoWidth(true);

Button button = new Button("Save");
cp.addButton(new ButtonAdapter(saving));
cp.addButton(button);
cp.addButton(new Button("Cancel"));
RootPanel.get().add(cp);

SelectionListener<ButtonEvent> sl
= new SelectionListener<ButtonEvent>() {
 public void componentSelected(ButtonEvent be) {
 cp.getButtonBar().setEnabled(false);
 saving.show();
 }
};
button.addSelectionListener(sl);

42 Developing with Ext GWT

IconButton and ToolButton
IconButtons are used where you need a small visual button that doesn’t require a text
explanation of what the button action does. Common examples are the close or minimize
buttons on windows. If you wish, you can define your own IconButton, but you’ll need to
include the icon image and two other icons that represent the hover-over and disabled styles.
The hover-over and disabled style names are set by adding the text -over and -disabled to the
defined base style name.

GXT includes a range of predefined icons in the ToolButton widget. Figure 3-9 illustrates all of
the available ToolButton options, placed onto a ContentPanel’s header.

Figure 3-9. ToolButton example

.widget.toolbar
This section outlines the .toolbar package and its associated classes. Toolbars offer a wider
selection of widgets than what simple IconButtons can offer. With a toolbar, you can basically
add any widget you like, as shown in Figure 3-10.

Figure 3-10. ToolBar example

The ToolBar is also a widget that can exist on its own, without needing to be part of a
ContentPanel. In Listing 3-20, I’ve added a ToolBar directly to the browser’s RootPanel, and it
correctly sizes itself to fill the width of the window.

Listing 3-20. ToolBar
ToolBar tb = new ToolBar();
tb.add(new Button("Save As..."));
tb.add(new SeparatorToolItem());
tb.add(new LabelToolItem("Formatting:"));
String txt = "B";
tb.add(new ToggleButton(txt));
txt = "I";
tb.add(new ToggleButton(txt));

 Developing with Ext GWT 43

txt = "<span style='font:14px times"
+ ";text-decoration:underline'>U";
tb.add(new ToggleButton(txt));
SimpleComboBox<String> scb = new SimpleComboBox<String>();
scb.add("Arial");
scb.add("Courier");
scb.add("Times");
tb.add(scb);
RootPanel.get().add(tb);

You’ll notice that I’ve also added a SimpleComboBox to the toolbar by wrapping it in an
AdapterToolItem. You can do this with any object that extends
com.google.gwt.user.client.ui.Widget, which includes all of the GXT widgets.

Note I will be covering ComboBox when we get to the section on forms, so don’t be too
concerned about how SimpleComboBox works.

.widget.menu
The classes within the .widget.menu package provide support for traditional menu bars and
menu items, and allow you to build comprehensive menus and submenus like the example in
Figure 3-11.

Figure 3-11. Menu example

44 Developing with Ext GWT

The Menu and MenuItem classes provide the majority of the functionality. A few additional
classes add specific features like a separator line, support for check boxes against menu items,
and a date menu item for selecting dates.

A menu can be added to most widgets, and in Figure 3-11, the menu was added to a MenuBar.
Logically, menus are a hierarchical list of items, and building them is performed in a similar
way: you hierarchically create the list of items and submenu items. When a submenu is needed,
you create another menu, which also has menu items, and so on.

Listing 3-21 outlines the MenuBar building hierarchy.

Listing 3-21. MenuBar
Menu fileMenu = new Menu();
fileMenu.add(new MenuItem("New"));
fileMenu.add(new MenuItem("Open", "tree-folder-open"));
fileMenu.add(new MenuItem("Save"));

fileMenu.add(new SeparatorMenuItem());

MenuItem sub = new MenuItem("Recent");
Menu recent = new Menu();
recent.add(new MenuItem("text.txt"));
recent.add(new MenuItem("bookdraft.doc"));
recent.add(new MenuItem("build.xml"));
sub.setSubMenu(recent);
fileMenu.add(sub);

fileMenu.add(new SeparatorMenuItem());
fileMenu.add(new MenuItem("Close"));

Menu helpMenu = new Menu();
helpMenu.add(new MenuItem("Help Topics"));
helpMenu.add(new SeparatorMenuItem());
helpMenu.add(new MenuItem("About"));

MenuBar mb = new MenuBar();
mb.add(new MenuBarItem("File",fileMenu));
mb.add(new MenuBarItem("Help",helpMenu));

RootPanel.get().add(mb);

Menus can be added to widgets that have a setMenu(Menu) method. When selected, these
widgets show the menu. Other widgets have a setContextMenu(Menu) method, and show the
menu when it is right-clicked.

 Developing with Ext GWT 45

.widget.tips
ToolTips, when added to widgets, provide additional information about the widget when you
hover over the widget, as illustrated in Figure 3-12.

Figure 3-12. ToolTip example

All widgets that extend Component include support for a setToolTip(String) method as a
convenient way to quickly set up a tool tip. In addition, Component provides a
setToolTip(ToolTipConfig) method that adds further tool tip configuration flexibility as well as
a convenience method for adding tool tips.

Listing 3-22 illustrates both of these methods of adding tool tips to some buttons.

Listing 3-22. ToolTip
HorizontalPanel hp = new HorizontalPanel();
hp.setSpacing(20);
Button b1 = new Button("Inject");
b1.setToolTip("Inject the web with cool applications.");
Button b2 = new Button("Extract");
ToolTipConfig ttc = new ToolTipConfig();
ttc.setTitle("Major Extraction Process");
ttc.setText("Begin the extensive extraction process
 that will get all knowledge from the Internet.");
b2.setToolTip(ttc);
hp.add(b1);
hp.add(b2);
RootPanel.get().add(hp);

Another option for adding tool tips is QuickTip. QuickTip extends ToolTip and obtains its
configuration information directly through markup. Using the element attributes, QuickTip
provides a quick solution to adding tool tips when you’re using templates or specifying the
HTML markup directly.

46 Developing with Ext GWT

QuickTip supports the following attributes:

 qtip: The tool tip message (required)

 qtitle: The title of the tool tip (optional)

 qwidth: The width of the toot tip (optional)

Listing 3-23 adds a QuickTip to an Html widget.

Listing 3-23. QuickTip
String qtip = "We're in the business of big things!!";
String qtitle = "About Us...";
String text = "Big Business Enterprises";

Html h = new Html("<div qtip=\"" + qtip
 + "\" qtitle=\"" + qtitle + "\" qwidth=120>"
 + text + "</div>");
h.setIntStyleAttribute("fontWeight", 700);
new QuickTip(h);

RootPanel.get().add(h);

State Management
Often when building a web application, you’d like to save some user setting or attribute based
on information such as the user’s last setting, which tab they had open, or the check boxes they
last clicked. Rather than persisting this information to a database, you can use cookies to store
this information locally within the browser.

The GXT com.extjs.gxt.ui.client.state.StateManager class performs this task fairly easily.
The default implementation of StateManager uses GWT client-side cookies to store all state
information (via a simple CookieProvider implementation). The Provider class takes care of the
initialization and transformation of data into and out of cookies.

You use the StateManager as follows:
StateManager.get().set("id", obj);

where id is the identification tag and obj is any kind of object data you wish to store.

In GXT, you can also store state data within every widget that extends Component—and that’s
all of them. Component’s getState() method returns a Map that you can use to store any number
of objects and data. When you have completed storing or updating objects, you then call
saveState() to ensure all data is stored away using the persistence method within the current
StateManager instance.

 Developing with Ext GWT 47

Themes—Let’s Make It Pretty
Themes within GXT provide an extensible way to visually change the look of all the included
widgets. There are three built-in themes: Blue (the default), Gray, and Slate. Each theme
includes all the CSS and images needed to uniquely style and render the widgets correctly for
each supported browser.

USING OTHER THEMES
In addition to the provided themes, the GXT community has also published a
range of themes. Many of the Ext JS framework themes can also be adapted to
work with GXT. All that is required is to extend the class theme and create a
constructor that calls the superclass with a static name and the required CSS
file. You’ll also need to include the CSS and all the associated images so they
can be located.

While Blue is the default theme for all GXT applications, it is possible to change to a different
theme. For example, to make the Gray theme the default, use the following line:
GXT.setDefaultTheme(Theme.GRAY, true);

This needs to be the very first thing your application does. This is important because all widgets
extend the GXT Component class, and Component statically calls GXT.init() when
instantiated, and so will enable the default theme, all before you can change it to something
else.

Note This is an important concept to understand: something as simple as your
application’s main entry point class extending LayoutContainer will result in GXT.init() being
executed before you can change the default theme.

The solution is to ensure your application’s main entry point class simply implements
com.google.gwt.core.client.EntryPoint and does not statically or otherwise instantiate any
GXT classes before you change the default theme.

The other included theme, Slate, is only defined differently as an example of a custom theme.
Slate essentially provides a model on which you can create and extend your own theme, or
include one of the existing Ext JS community themes. As the Slate theme is a custom theme, it
must be registered with the ThemeManager, which is performed as follows:

48 Developing with Ext GWT

ThemeManager.register(Slate.SLATE);

Figure 3-13 shows an example of a ContentPanel and a few widgets using the Slate theme.

Figure 3-13. Slate theme example

GXT also provides a widget that simplifies the user theme selection and change process.
ThemeSelector is a drop-down selection box with the necessary code to display the current
theme. When the selection changes, the theme switches by reloading the application.

Listing 3-24 builds the Slate theme example.

Listing 3-24. QuickTip
GXT.setDefaultTheme(Slate.SLATE, false);
ThemeManager.register(Slate.SLATE);

ContentPanel cp = new ContentPanel();
cp.setHeading("Themes...");
cp.setBounds(10, 10, 250, 140);
cp.setCollapsible(true);
cp.setFrame(true);
cp.addText("The current theme is : "+GXT.getThemeId());
cp.add(new ThemeSelector());
cp.addButton(new Button("OK"));
RootPanel.get().add(cp);
cp.layout();

StateManager.get().set(GWT.getModuleBaseURL() + "theme", "");

Note that in Listing 3-24, GXT.setDefaultTheme is called with the second parameter (force) set
to false. When GXT initializes, it interrogates a local browser cookie to determine the previous
default theme. Setting force to true will override the previous theme, whereas false will only
change the default theme if no previous theme has been saved.

The last line in Listing 3-24 clears this theme cookie. You may wish to do this when you are
testing and verifying how things work when using themes and defaults.

 Developing with Ext GWT 49

Summary
At this stage in the book, you should be really getting a good handle on the range of widgets and
possibilities with GXT. I’ve covered the basics of a GXT application by covering how things
are rendered and providing an overview of the event system, which led into an explanation of
the Container classes, such as ViewPort, LayoutContainer, ContentPanel, and TabPanel, and the
Window, Dialog, and MessageBox widgets.

I then moved onto some more widgets, such as Html and ProgressBar; introduced the first of the
data widgets, DataList and ListView; and finally discussed the Button, ToolBar, Menu, and
Tips widgets.

Wow! This certainly has been a weighty chapter with plenty of coverage. The next chapter steps
it up again and explains how layouts work in GXT, introduces the range of layout managers,
begins the coverage on some of the advanced stuff (such as Forms, Portal, and Drag-n-Drop),
and shows you how to use XTemplates.

 Developing with Ext GWT 51

Chapter 4: Advanced Widgets and Stuff
Let’s turn up the gas and jump into some more advanced (and exciting) features of GXT:
Layouts, Forms, Portal, and Drag-n-Drop.

Layout managers are probably one of the most important features of GXT to learn. As layout
managers translate code into a visual arrangement of widgets, it is critical that you provide the
correct instructions and hints so that GXT can position and size widgets in the places you
intended.

Forms and their associated widgets are a fundamental part of any application, and so GXT has a
good helping of Form widgets and components to make your applications look very tasty.

Portal and Drag-n-Drop round out the coverage of the advanced stuff in this chapter. Portal
allows you to build an application that has iGoogle-like panel Portlets. The Drag-n-Drop API
allows you to add drag-and-drop functionality to widgets that support it.

Layouts
In the previous chapter, I introduced the concept of layout managers. A fundamental part of
GXT containers, layout managers are designed to assist in the positioning and sizing of child
widgets. Layout managers perform an important function in creating a consistent user interface
for applications rendered using the browser’s inherent HTML layout capabilities.

GWT Panels
Before we introduce GXT layout managers, it is helpful to understand how GWT performs its
layouts. In GWT, panels themselves are responsible for creating the required markup and
inserting their children into the DOM.

To make this clearer, let’s go through a GWT example. Consider what happens when the GWT
compiler executes this bit of code:
VerticalPanel panel = new VerticalPanel();

Upon executing this single line, GWT immediately generates this markup in the DOM:
<TABLE cellSpacing=0 cellPadding=0>
<TBODY>
</TBODY>
</TABLE>

If we now add a child to the panel, the panel generates further markup and inserts this item in
the DOM. Let’s add a label to the panel as follows:

52 Developing with Ext GWT

VerticalPanel panel = new VerticalPanel();
panel.add(new Label("Child 1"));

This results in the following markup:
<TABLE cellSpacing=0 cellPadding=0>
 <TBODY>
 <TR>
 <TD style="VERTICAL-ALIGN: top" align=left>
 <DIV class=gwt-Label>Child 1</DIV>
 </TD>
 </TR>
 </TBODY>
</TABLE>

The pattern here is that GWT will insert and manipulate the structure of the DOM as each child
is added to the panel. If we remove the label from the panel, the table row will be immediately
removed.

Unlike GWT panels, containers in GXT do not physically connect child components to the
container’s DOM. This task is taken care of by layout managers.

Replicating the previous GWT example, let’s begin by creating a container with a vertical
layout that utilizes a table structure.
LayoutContainer container = new LayoutContainer();
container.setLayout(new TableLayout(1)); // 1 column

At this point, no HTML elements have been created. This is quite different from GWT panels
that would have already generated HTML elements for the panel and its children. Going further,
let’s add a child label:
LayoutContainer container = new LayoutContainer();
container.setLayout(new TableLayout(1)); // 1 column
container.add(new Label("Child 1"));

Even after adding a child component, no HTML elements have been created. You might now be
wondering, “So when do the elements get created?”

Excellent question! In order for the container's HTML to be created and children inserted, the
container's layout must execute. There are several ways in which the layout can execute, but for
now, let's go with the simplest case in which the layout executes, when the container is
attached. Attached is a GWT term that indicates that the widget is part of the browser's DOM.
Attaching and detaching are subjects on their own, so let's assume they mean when the widget is
added to and removed from the page.

When we add the container to RootPanel, the container will be attached, and the container's
layout will execute. Let’s now add that final bit of code to the example.

 Developing with Ext GWT 53

LayoutContainer container = new LayoutContainer();
container.setLayout(new TableLayout(1)); // 1 column
container.add(new Label("Child 1"));
RootPanel.get().add(container);

TableLayout executes, creates the container HTML structure, and inserts each child into its
table cell. The resulting markup is as follows:
<div id="x-auto-0" style="overflow: hidden;">
 <table>
 <tbody>
 <tr>
 <td>
 <div id="x-auto-1" class="gwt-Label">Child 1</div>
 </td>
 </tr>
 </tbody>
 </table>
</div>

If GXT layout managers execute only when attached, what do we do when we add a child
component after a container has attached? Let’s add another child label to the container.
LayoutContainer container = new LayoutContainer();
container.setLayout(new TableLayout(1)); // 1 column
container.add(new Label("Child 1"));
RootPanel.get().add(container);
container.add(new Label("Child 2"));

As expected, the resulting HTML is exactly as before, because the layout manager executed
when the container was attached. If we leave the example like this, the extra child will never be
rendered.

The addition of the second child component requires that the layout be manually executed, and
we do this by calling layout(), as follows:
LayoutContainer container = new LayoutContainer();
container.setLayout(new TableLayout(1)); // 1 column
container.add(new Label("Child 1"));
RootPanel.get().add(container);
container.add(new Label("Child 2"));
container.layout();

Manually executing the layout is required when the container has been attached (rendered), and
you add child components.

54 Developing with Ext GWT

Cascading Layouts
Previously, we discussed two ways of executing a container's layout. First, when the layout is
executed as the container is attached; and second, when you call layout() manually on the
container. There are other ways in which a layout can execute that relate to cascading containers
and layouts.

After a container executes its layout, it determines if any of its children are containers. When it
finds a child container, it then executes that child container’s layout. So as long as there is a
chain of containers, the execution of layouts will cascade to the child containers.

Note Due to this cascading effect, you can lay out a top-level container and the child
containers will adjust their layouts as well.

A container's layout will also execute when its size is adjusted. This is a default behavior and
can be disabled. This means that if a container's size is changed, the layout (and any child
container’s layout managers) will update based on the container's new size.

Layout Managers
There are 16 layout managers available. Table 4-1 lists all the layout managers along with a
short description and the purpose of each.

Table 4-1. The List of Available Layout Managers

LAYOUT MANAGER DESCRIPTION / PURPOSE

AccordionLayout

This is a layout that contains multiple ContentPanels in an
expandable accordion style such that only one panel can be open
at any given time. Closed panels are shown as minimal title bar
tabs placed above or below the currently open panel.

AnchorLayout

A layout that enables anchoring of contained widgets relative to the
container's dimensions. For example, using this layout, you can
specifiy that the widget takes up 50 percent of the container’s width
and 100 percent of its height.

 Developing with Ext GWT 55

Table 4-1. (continued)

AbsoluteLayout

This layout inherits the anchoring of AnchorLayout and adds the
ability for left-side and top positioning using AbsoluteData’s left
and top properties. For example, using this layout, you can specifiy
that the widget is located in a specific location with a specific size.

BorderLayout

This is a multipane, application-oriented UI layout style that
supports multiple regions, automatic split bars between regions,
and built-in expanding and collapsing of regions. For example,
using this layout, you can specifiy that widgets are located in the
north, south, and center locations with a collapsible/resizable
eastern section.

CardLayout

This layout contains multiple widgets, each fit to the container,
where only a single widget can be visible at any given time. This
layout is useful for wizards or containers that need to show content
at progressing stages.

CenterLayout CenterLayout centers a single widget within its container.

ColumnLayout

This layout creates structural layouts in a multicolumn format
where the width of each column can be specified as a percentage
or fixed width, but the height is allowed to vary based on the
content.

FillLayout
FillLayout places its child components in a horizontal or vertical
row, forcing them all to be the same identical size. This layout
extends RowLayout.

FitLayout This layout supports a single widget that automatically expands to
fill the layout's container.

FlowLayout
This layout renders each child component into its container using
normal browser element flow. This is the default layout for all
containers.

FormLayout
A specialized layout that only supports form field widgets. This
layout correctly positions and sizes field widgets and adds a text
label.

HBoxLayout
A layout that lays its child components in a horizontal row, offering
many flexible sizing and positioning options. This layout extends
BoxLayout.

56 Developing with Ext GWT

Table 4-1. (continued)

RowLayout
This layout positions the container's children in a single horiztontal
or vertical row. Each component may specify its height and width in
pixels or as a percentage.

TableLayout
This layout allows you to easily render content into an HTML table.
The layout, based on a total column count, correctly places widgets
into table rows and columns.

TableRowLayout This is a single-row TableLayout that lays out widgets in multiple
columns with a single horizontal row.

VBoxLayout
A layout that lays its child components in a vertical row, offering
many flexible sizing and positioning options. This layout extends
BoxLayout.

Layout managers utilize layout data to provide layout hints when executing the layout. Each
layout manager has a specific layout data class that provides hint information for each specific
layout.

Most of the layout managers are quite straightforward in their use; you simply use the
setLayout method of the container to enable the layout manager for the container. You can then
use a specialized add method for adding widgets to the container. The add method also accepts a
second parameter, an appropriate LayoutData-derived object, which conveniently allows you to
apply layout hints for each child widget you add.

As mentioned earlier, layout managers execute when layout() is called, which in turn delegates
to onLayout() and renders all the container’s child widgets—onLayout is where all the layout
action starts. This method performs the layout and iterates over each child widget, and, using
the extracted layout data, applies appropriate layout attributes, creates needed HTML elements,
and sets the required sizing and positioning for each widget.

Containers automatically call their layout() method when they are attached to the DOM. In
turn, the layout manager’s layout() method is called, which means you don’t have to call
layout() manually unless you add or remove child widgets. This implies that adding child
widgets after a layout has executed will result in the widgets not appearing, and this is correct.
You need to call layout() if you add a child widget to a container that has rendered.

 Developing with Ext GWT 57

Note Always consider how a container will be sized. Some layouts require that the
container is correctly sized so that it is able to lay out the container’s children. You can size a
container either directly, by setting the container’s size, or indirectly, through the parent’s layout
(assuming the container has a parent that sizes its children).

Layout Tips-n-Tricks
Even though using layout managers is not an overly complex task, I’ve found a few tips that
should help you become successful when approaching complex layout problems.

 Which layout to use: Every container and any container within another container needs a
layout to be defined. Layout mistakes don’t generate errors; things just don’t render
correctly, so it can be hard to figure out what is going wrong. It is best to ensure all
containers have a layout clearly set. I tend to think it a shame that GXT defaults to
FlowLayout for all containers, because this can allow lazy mistakes to creep in.

 Start simple: Rather than continuously adding more complexity to a large user interface
layout, start with individual containers, get the layout correct for each, and then add them as
working parts. This will ensure that layout errors are not bleeding into each other.

 Nest layouts: Sometimes the easiest solution to a complex layout problem is to nest layouts
together. For example, rather than trying to work out how to force a single container’s
layout to behave in some complex manner, just add two LayoutContainers. Each container
can have a different layout and, when combined vertically or horizontally, will produce the
desired result in most cases.

 Turn borders on: When using LayoutContainer (the base class for arranging layouts),
make sure you initially set setBorder to true so that you can visually see the size and
position of the container. This can save you hours of wondering why all your widgets are
squashed to the left side when, in fact, the layout container itself is the constraint.

 Who is sizing whom: Ensure all containers are either specifically sized by a
setSize(int,int) method or sized indirectly through a parent layout manager. When
relying on a parent layout manager, pay particular attention to the layout data hints to
ensure the child containers are being sized as you intended.

Those are really the best tips I can give you for how to master layouts. From here onward, I’ll
cover each layout manager individually so you have a sound understanding of the various types
and how each can be used.

58 Developing with Ext GWT

CenterLayout
As layout managers go, CenterLayout is by far the simplest. Leaving sizing for the child widget,
it simply sets the position of the child widget to be the center of its parent container. During
execution of the layout, CenterLayout simply calls the El.center(Container element) method
to center the child widget within its parent container.

AnchorLayout and AbsoluteLayout
AnchorLayout sizes its children but does not position them. By default, the layout calculates
measurements from the container size or, optionally, a virtual anchorSize value. Each child
widget can set an anchor specification string, which sets the width and height of the widget
relative to its parent container.

Anchor specification is a string that contains two values separated by a space character; for
example, “50% 100%”. The first value is the width, and the second value corresponds to the
height. You can use percentage values or any positive or negative integer values. Integers are
treated as offsets from the right and bottom edge, respectively.

AbsoluteLayout extends AnchorLayout and adds positioning support with X and Y locations
specified as the left and top of the child widget relative to the parent container.

Listing 4-1 demonstrates AnchorLayout and AbsoluteLayout in action.

Listing 4-1. AnchorLayout and AbsoluteLayout
Viewport viewport = new Viewport();
viewport.setLayout(new AnchorLayout());

ContentPanel cp = new ContentPanel();
cp.setHeading("Layout Example");
cp.setLayout(new AbsoluteLayout());

cp.add(new Button("15,20"), new AbsoluteData(15,20));
cp.add(new Button("150,10"), new AbsoluteData(150,10));
cp.add(new Button("25,60"), new AbsoluteData(25,60));

viewport.add(cp, new AnchorData("100% 50%", new Margins(10)));
RootPanel.get().add(viewport);

 Developing with Ext GWT 59

FitLayout and FlowLayout
FlowLayout is the default layout for all containers, so if you fail to set a layout for any
container, you’ll be using FlowLayout. Using this layout results in normal browser flow, where
the elements are rendered starting at the top left and flow downward. Each widget needs to
handle its own sizing requirements, as the layout will not size children within the container.

FitLayout supports only a single widget and expands/sizes this single child widget to fit the
entire available space in the parent container.

In Figure 4-1, the first panel, titled “Fit,” shows a container sized by FitLayout; the second
panel, titled “Flow,” shows two containers that are self-sized and placed by the layout one after
the other.

Figure 4-1. FitLayout and FlowLayout example

60 Developing with Ext GWT

FitLayout and FlowLayout both support setting margins for child widgets using MarginData or
their respective subclasses, FitData and FlowData.

Listing 4-2 demonstrates FitLayout and FlowLayout in action.

Listing 4-2. FitLayout and FlowLayout
Viewport viewport = new Viewport();

ContentPanel cp = new ContentPanel();
cp.setHeading("Fit");
cp.setLayout(new FitLayout());
Html h = new Html("");
h.setStyleAttribute("backgroundColor", "#FF9999");
cp.add(h,new FitData(10));
cp.setSize(200, 200);
viewport.add(cp ,new MarginData(10));

cp = new ContentPanel();
cp.setHeading("Flow");
cp.setLayout(new FlowLayout());
h = new Html("");
h.setSize(100, 100);
h.setStyleAttribute("backgroundColor", "#99FF99");
cp.add(h,new FlowData(5));
h = new Html("");
h.setSize(250, 20);
h.setStyleAttribute("backgroundColor", "#9999FF");
cp.add(h);
cp.setSize(400, 200);
viewport.add(cp ,new MarginData(0,10,10,10));

RootPanel.get().add(viewport);

AccordianLayout and CardLayout
AccordianLayout and CardLayout both extend FitLayout, and thus size their child widgets but
do not position them. Both layout managers provide specific functionality for displaying only a
single widget at a time.

AccordianLayout is an expandable/collapsible set of ContentPanels that shows only a single
active ContentPanel at any time, in an accordion style. All children added to the container must
be ContentPanel instances.

CardLayout allows multiple widgets, each sized to fill the container, but only a single widget
can be visible at any given time. Any widget can be added to the container. This layout style is

 Developing with Ext GWT 61

most commonly used for wizards and tab implementations where you need to switch quickly
back and forth between visible content.

Listing 4-3 demonstrates AccordianLayout and CardLayout in action.

Listing 4-3. AccordianLayout and CardLayout
Viewport viewport = new Viewport();
viewport.setLayout(new AccordionLayout());

ContentPanel cp = new ContentPanel();
cp.setHeading("Inbox");
CardLayout cl = new CardLayout();
cp.setLayout(cl);

Html h1 = new Html("Page1");
Html h2 = new Html("Page2");
Html h3 = new Html("Page3");
cl.setActiveItem(h2);
cp.add(h1);
cp.add(h2);
cp.add(h3);

viewport.add(cp);
cp = new ContentPanel();
cp.setHeading("Sent Items");
viewport.add(cp);
cp = new ContentPanel();
cp.setHeading("Drafts");
viewport.add(cp);
RootPanel.get().add(viewport);

RowLayout and FillLayout
RowLayout positions its children in a single horizontal or vertical row. Using RowData, each
component may specify its height and width in pixels or as a percentage, and may optionally
include a margin.

FillLayout extends RowLayout and places its components in a single row or column, forcing
them to be of equal size, filling the container. Like RowLayout, margins can be specified by
using FillData.

In Figure 4-2, the first panel, titled “Row,” shows two containers sized by RowLayout. The first
container is sized to fill 100 percent of the available space. The second container has its width
sized to 80 percent of the available space, and the container’s height is sized to 50 percent. The

62 Developing with Ext GWT

panel, titled “Fill,” shows two containers that are sized to fill the available space, with the
second container having a 10-pixel margin.

Figure 4-2. RowLayout and FillLayout example

Listing 4-4 demonstrates RowLayout and FillLayout in action.

Listing 4-4. RowLayout and FillLayout
Viewport viewport = new Viewport();

ContentPanel cp = new ContentPanel();
cp.setHeading("Row");
cp.setLayout(new RowLayout(Orientation.HORIZONTAL));
Html h = new Html("");
h.setStyleAttribute("backgroundColor", "#99FF99");

 Developing with Ext GWT 63

cp.add(h,new RowData(200,200));
h = new Html("");
h.setStyleAttribute("backgroundColor", "#9999FF");
cp.add(h,new RowData(.8,.5 ,new Margins(5)));
cp.setSize(400, 200);
viewport.add(cp , new MarginData(10));

cp = new ContentPanel();
cp.setHeading("Fill");
cp.setLayout(new FillLayout(Orientation.HORIZONTAL));
h = new Html("");
h.setStyleAttribute("backgroundColor", "#FFFF99");
cp.add(h);
h = new Html("");
h.setStyleAttribute("backgroundColor", "#FF99FF");
cp.add(h ,new FillData(10));
cp.setSize(400, 200);
viewport.add(cp , new MarginData(0, 10, 10, 10));

RootPanel.get().add(viewport);

HBoxLayout and VBoxLayout
As flexible layout managers, both HBoxLayout and VBoxLayout extend BoxLayout and
arrange children in vertical or horizontal rows of boxes according to a set of layout options. To
size and position child widgets, these layout managers use one or a combination of the
following options:

 Pack: Options are Start, Center, or End. Positioning of the widgets relative to the box
depends on the layout. For example, Pack-Start places widgets near the top for VBoxLayout
and on the left side for HBoxLayout.

 Align: Options are Left, Center, Stretch, or StretchMax. Stretch expands (stretches) widgets
to the width (or height) of the box. StretchMax stretches widgets to the maximum size of
the widest (or tallest) widget in the box.

 Flex: An optional layout data hint that tells the layout to use all available space for this
widget. Flex also accepts ratio values, so that more space can be allocated to a particular
widget.

Note Some of these options behave relative to the layout in use. For example, Align-
Stretch applies to a widget’s width for VBoxLayout and a widget’s height for HBoxLayout.

64 Developing with Ext GWT

ColumnLayout, TableLayout, and TableRowLayout
ColumnLayout is a fairly simple layout manager. It simply adjusts the width of the container’s
children based on the value of the ColumnData width. If the ColumnData width value is greater
than 1.0, the child widget will be set to that width in pixels. If the ColumnData width value is
less than 1.0 but greater than 0.0, the child widget will be set to a percentage of the remaining
parent container width.

TableLayout is fundamentally a layout manager that uses the HTML Table element as its
underlying layout structure. If you are slightly familiar with HTML tables, then you should have
a fairly good understanding of the features and capabilities of TableLayout.

TableRowLayout extends TableLayout, with very similar features and layout capabilities, but
only offers a single row.

In Figure 4-3, three buttons are laid out within a container set with TableLayout.

Figure 4-3. TableLayout example

Listing 4-5 demonstrates TableLayout.

Listing 4-5. TableLayout
Viewport viewport = new Viewport();

LayoutContainer lc = new LayoutContainer();
TableLayout tl = new TableLayout(3);
tl.setBorder(1);
tl.setWidth("100%");
tl.setHeight("200px");
lc.setLayout(tl);

 Developing with Ext GWT 65

TableData td = new TableData();
td.setVerticalAlign(VerticalAlignment.TOP);
lc.add(new Button("c1"), td);
td = new TableData();
td.setHorizontalAlign(HorizontalAlignment.CENTER);
lc.add(new Button("c2"), td);
td = new TableData();
td.setHorizontalAlign(HorizontalAlignment.RIGHT);
td.setVerticalAlign(VerticalAlignment.BOTTOM);
lc.add(new Button("c3"), td);
lc.setSize(400, 200);
viewport.add(lc, new MarginData(10));

RootPanel.get().add(viewport);

BorderLayout
As a layout manager, BorderLayout is a little more advanced, providing a few extra features in
addition to executing a layout. As described in Table 4-1, BorderLayout has center, northern,
southern, eastern, and western regions. All outer regions are sizable and collapsible.

To enable the collapsible feature, add a ContentPanel to the region and ensure the
BorderLayoutData has setCollapsible set to true. (BorderLayoutData is where you specify
things like whether the region is sizeable.) If the region is collapsible, an expand/collapse tool
button is automatically rendered in the title bar of the region. If the region is sizeable,
BorderLayout renders the borders of that region to automatically have split bars, allowing the
user to resize the region within the minimum and maximum sizes you specify.

Another interesting feature of BorderLayout is that it remembers the last collapsed/expanded
state and size of each region by using StateManager. This saved data can be cleared by calling
panel.clearState() for each region’s panel.

A typical use of BorderLayout is shown in Figure 4-4.

66 Developing with Ext GWT

Figure 4-4. BorderLayout example

Listing 4-6 shows how the BorderLayout example was constructed.

Listing 4-6. BorderLayout
Viewport viewport = new Viewport();
BorderLayout bl = new BorderLayout();
viewport.setLayout(bl);

LayoutContainer north = new LayoutContainer();
north.addText("North: Application Title");
ContentPanel west = new ContentPanel();
west.setHeading("West: Navigation");
ContentPanel center = new ContentPanel();

BorderLayoutData northData
= new BorderLayoutData(LayoutRegion.NORTH, 20);
northData.setMargins(new Margins(5, 5, 0, 5));

BorderLayoutData westData
= new BorderLayoutData(LayoutRegion.WEST, 150);
westData.setCollapsible(true);
westData.setFloatable(true);
westData.setSplit(true);
westData.setMargins(new Margins(5, 0, 5, 5));

 Developing with Ext GWT 67

BorderLayoutData centerData
= new BorderLayoutData(LayoutRegion.CENTER);
centerData.setMargins(new Margins(5));

viewport.add(north, northData);
viewport.add(west, westData);
viewport.add(center, centerData);

RootPanel.get().add(viewport);

FormLayout
FormLayout is a specialized layout manager for dealing with forms. Essentially, the layout
builds the form vertically, adds labels, and provides a correct amount of padding and margin for
each field.

The next section covers the implementation details of building forms, but here I’ll mention one
important consideration for using the FormLayout layout manager: FormLayout is designed to
work with widgets that are instances of Field.

Caution As FormLayout will only lay out widgets that extend Field, any widget you add
that isn’t derived from Field won’t be added to the container and won’t be rendered. This is an
easy mistake to make, as Container allows you to add any widget that extends Component.

AdapterField (which extends Field) provides support for wrapping widget subclasses so you can
add any widget to a container using FormLayout.

Forms
Forms are a staple part of a web application diet. You need forms for data input, data display,
and user interaction. The GXT package com.extjs.gxt.ui.client.widget.form is dedicated to
forms and contains a smorgasbord of widgets.

To assist with the organization and layout of form widgets, GXT provides a container,
FormPanel, and layout manager, FormLayout.

FormPanel, a subclass of ContentPanel, is configured with the FormLayout layout manager by
default and also provides support for submitting form field data using an HTTP POST or GET
request. In addition, it also contains some convenience methods for interacting with field
validation.

68 Developing with Ext GWT

FormLayout, introduced in the previous section, provides specialized support for adding labels
to fields and laying out widgets suitably aligned in a vertical fashion.

Tip FormPanel may not be suitable for all situations with forms. It can sometimes be
more effective to add FormLayout to a dialog or an existing container.

Field, the base class for Form fields, provides default event handling, value handling and
validation, and invalid error message indication. All Form widgets extend Field and utilize
much of its base implementation.

There are a large number of widgets that extend Field and provide a specific field function.
Table 4-2 lists all the Form widgets along with a short description and purpose.

Table 4-2. List of the Available Form Widgets

WIDGET DESCRIPTION / PURPOSE

AdapterField Allows any widget to be used in FormLayout by wrapping the
widget in a Field subclass.

CheckBox Single check box (or tick box) field button. Can be used alone or
with CheckBoxGroup.

CheckBoxGroup A group of CheckBox widgets that adds support for aligning all
check boxes together horizontally or vertically.

ComboBox A drop-down combo box field that supports complex data types
using ModelData objects.

DateField A date input field with a DatePicker drop-down and date validation.

FieldSet A container that draws a border around the form widgets, supports
a title, and provides collapsible/expandable functionality.

FileUploadField A file upload field with an associated browse button.

FormPanel A ContentPanel for displaying form widgets and submitting them.
Includes form submit and validation support.

HiddenField A field for hidden values that need to be passed in the form submit.

 Developing with Ext GWT 69

Table 4-2. (continued)

HtmlEditor A lightweight HTML editor that provides WYSIWYG editing for rich
text content.

LabelField Displays static text for a label.

ListField A multiselect list field based on ListView that supports complex
data types using ModelData objects.

MultiField A field that displays multiple fields in a single row or column.
Superclass of CheckBoxGroup and RadioGroup.

NumberField A text field that has automatic key filtering and numeric validation.

Radio Single radio field similar to a check box, but with a round radio
button. Can be used alone or with CheckBoxGroup.

RadioGroup
A group of Radio widgets that adds support for aligning all radio
buttons together horizontally or vertically. Also ensures only a
single radio button in the group can be selected.

SimpleComboBox A ComboBox subclass that supports any simple data types by
internally wrapping provided types into ModelData objects.

TextArea A text field that supports multiple lines (plain text only).

TextField Basic text field for raw/plain text input.

TimeField A field with a time drop-down and automatic time validation.

TriggerField A TextField that adds a clickable trigger button (like ComboBox).

TwinTriggerField A two-trigger version of TriggerField.

As you can clearly see, there is a large number of Form widgets that provide numerous options
for you to interact with, manage, and display data input.

Rather than provide examples of each widget, I’ll demonstrate a simple form with some basic
initial features and an advanced form that can submit data and showcases a two-column layout.

A Form Example
Listing 4-7 is the complete code that produces the Personal Information form in Figure 4-5. You
can use this example in your own application.

70 Developing with Ext GWT

Listing 4-7. Personal Information Form
final FormPanel fp = new FormPanel();
fp.setHeading("Personal Information");
fp.setFrame(true);

TextField fn = new TextField();
fn.setFieldLabel("First name");
fn.setEmptyText("Must not be blank");
fn.setAllowBlank(false);
fp.add(fn);
TextField ln = new TextField();
ln.setFieldLabel("Last name");
fp.add(ln);
TextField em = new TextField();
em.setFieldLabel("Email");
em.setAllowBlank(false);
em.setSelectOnFocus(true);
final String emailReg
 = "[A-Z0-9._%+-]+@[A-Z0-9.-]+\\.[A-Z]{2,4}";
final String errMsg = "Not a valid email address!";
em.setValidator(new Validator<String,
 TextField<String>>() {
 public String validate(TextField<String>
 field, String value) {
 if (!value.toUpperCase().matches(emailReg)) {
 return errMsg;
 }
 return null;
 }
 });
fp.add(em, new FormData("80%"));
TextArea ad = new TextArea();
ad.setFieldLabel("Address");
fp.add(ad, new FormData(270, 100));

Radio radio = new Radio();
radio.setName("radio");
radio.setBoxLabel("Male");
radio.setValue(true);

Radio radio2 = new Radio();
radio2.setName("radio");
radio2.setBoxLabel("Female");

RadioGroup radioGroup = new RadioGroup("test");

 Developing with Ext GWT 71

radioGroup.setFieldLabel("Sex");
radioGroup.add(radio);
radioGroup.add(radio2);
fp.add(radioGroup);

SimpleComboBox<String> combo;
combo = new SimpleComboBox<String>();
combo.add("Small");
combo.add("Medium");
combo.add("Large");
combo.add("Xtra Large");
combo.setFieldLabel("Shirt Size");
combo.setEditable(false);
combo.setSimpleValue("Large");
fp.add(combo);

CheckBox check1 = new CheckBox();
check1.setBoxLabel("Brochures");

CheckBox check2 = new CheckBox();
check2.setBoxLabel("Events");
check2.setValue(true);

CheckBox check3 = new CheckBox();
check3.setBoxLabel("Announcements");

CheckBoxGroup checkGroup = new CheckBoxGroup();
checkGroup.setFieldLabel("Subscribe");
checkGroup.add(check1);
checkGroup.add(check2);
checkGroup.add(check3);
fp.add(checkGroup);

Button save = new Button("Save");
save.addSelectionListener(
 new SelectionListener<ComponentEvent>() {
 public void componentSelected(ComponentEvent ce) {
 fp.isValid();
 }
});
fp.getButtonBar().add(save);
fp.getButtonBar().add(new Button("Cancel"));

fp.setWidth(400);
fp.setFieldWidth(270);
fp.setPosition(10, 10);
fp.layout();

72 Developing with Ext GWT

RootPanel.get().add(fp);

You’ll notice the first field (First name) uses a built-in validation constraint (allowBlank, set to
false). This demonstrates the validation and error message features of GXT that make building
powerful and fully interactive forms easy.

You can also use custom validators, and I’ve added one to the Email text field. I used a regular
expression string, which will be used to validate the e-mail text. You simply create an
implementation of Validator and, in the validate method, return either an error message string
if the field is invalid or null if the field is OK.

I’ve also used SimpleComboBox, which hides a lot of the complexity required by the base
ComboBox. Internally, SimpleComboBox wraps the supplied generic type with a
SimpleComboValue. This is all handled internally, and generally you’ll never need to be aware
of it.

Both the Radio and CheckBox fields are grouped so that the label and layout are correct. The
grouping also ensures the radio selection is modal, meaning that only one radio button can be
selected at any time.

Figure 4-5. Personal Information Form example

FormLayout, by default, sizes the fields to the default width of 210 pixels; in the example, I’ve
adjusted this to work with the increased width of the container. You can also set the width and
height of each field using the FormData layout data hint.

 Developing with Ext GWT 73

Note You can’t use the widget’s setWidth and setHeight methods when using
FormLayout. The layout manager overrides these and sets them during layout. You may
remember from the previous section that the layouts are responsible for sizing and positioning.

Form’s Rich Text Editor
GXT 2.0 added a rich text editor (or WYSIWIG editor) widget, named HtmlEditor. As its name
suggests, the underlying source data is HTML.

To use HtmlEditor, you simply add it like any other Form widget. In Listing 4-8, I’ve set the
label alignment to TOP so that the HtmlEditor can be set to 100 percent width. A submit/cancel
button is added to the form, and a listener on the submit button writes the editor’s HTML text to
the console when the user presses it.

Listing 4-8. HtmlEditor
final FormPanel fp = new FormPanel();
fp.setHeading("Comments/Feedback");
fp.setFrame(true);
fp.setLabelAlign(LabelAlign.TOP);
fp.setLabelSeparator("");

final HtmlEditor ed = new HtmlEditor();
ed.setFieldLabel(
"Please Enter Your Comments/Feedback...");
ed.setHeight(200);
fp.add(ed, new FormData("100%"));

fp.setButtonAlign(HorizontalAlignment.RIGHT);
Button submit = new Button("Submit");
fp.addButton(submit);
SelectionListener listener
 = new SelectionListener<ButtonEvent>(){
 public void componentSelected(ButtonEvent ce) {
 System.out.println(ed.getValue());
}
};
submit.addSelectionListener(listener);
fp.addButton(new Button("Cancel"));

fp.setBounds(10, 10, 600, 300);
fp.layout();
RootPanel.get().add(fp);

74 Developing with Ext GWT

Listing 4-8 produces the form shown in Figure 4-6.

Figure 4-6. HtmlEditor example

Portal
Portal is essentially a container that allows its child panels (Portlets) to be arranged into
columns, as shown in Figure 4-7. Unlike a simple column layout manager, Portal has built-in
support for drag-n-drop selection and Portlet repositioning.

 Developing with Ext GWT 75

Figure 4-7. Portal example

To use Portal, you must first decide how many columns you need and then set the width for
each column. Then, add as many Portlets as you need to the Portal container. Portlets are a
subclass of ContentPanel and, therefore, offer the same features and styles.

Listing 4-9 creates a Portal and adds five Portlets.

Listing 4-9. Portal
Portal p = new Portal(2);
p.setSize("100%", "100%");
p.setColumnWidth(0, .67);
p.setColumnWidth(1, .33);

for (int n=0;n<5;n++) {
 Portlet pl = new Portlet();
 pl.setHeading("Portlet "+n);

 pl.addText(CodeSnippet.getBogusText());
 p.add(pl, n%2);
}
RootPanel.get().add(p);

Drag-n-Drop
Drag-n-Drop (DnD) is part of the com.extjs.gxt.ui.client.dnd package. This package
contains two base classes, DragSource and DragTarget, which provide the fundamental
mechanics for how DnD is handled within GXT.

76 Developing with Ext GWT

From these base classes, you can implement your own DnD functionality to any widget. If you
only wish to add DnD to Grid, Tree, or ListView, the following three DragSource and
DragTarget subclasses are provided:

 GridDragSource and GridDragTarget: Aimed at the Grid widget, these provide single
and multiple row selections for source, and allow insert and appends as targets for rows.

 TreeDragSource and TreeDragTarget: Aimed at the Tree widget, these provide single
tree item selection for source, and allow appends into tree parent nodes as well as re-
ordering by targeting itself.

 ListViewDragSource and ListViewDragTarget: Aimed at the ListView widget, these
provide the same features as GridDragSource and GridDragTarget.

In Listing 4-10, I created two lists and populated one list with a store containing a bunch of
CarModels. CodeSnippet.getCars() just returns a List<CarModel>. Essentially, the ListViews
do not have to be the same, but they do need to have the same model so that an item dragged
from a source is suitable for dropping onto the target. In saying that, I’ve changed the display
template for both lists so you can see that GXT actually handles the data internally and appends
the CarModel into the other list.

The setup for DnD is really straightforward. You define the DragSource and DragTarget for
each type of widget. In this example, we want to be able to drag and drop from and to both lists,
so we configure source and target for both the left and right list.

Listing 4-10. DnD
ContentPanel cp = new ContentPanel();
cp.setHeading("ListView Drag-n-Drop");
cp.setSize(400, 175);
cp.setFrame(true);
cp.setLayout(new RowLayout(Orientation.HORIZONTAL));

ListView<CarModel> leftList = new ListView<CarModel>();
leftList.setSimpleTemplate("{car_make}
 {car_model} <i>({car_year})</i>");
leftList.setDisplayProperty("name");
ListStore<CarModel> store = new ListStore<CarModel>();
store.add(CodeSnippet.getCars());
leftList.setStore(store);

ListView<CarModel> rightList = new ListView<CarModel>();
rightList.setSimpleTemplate("{car_year}
 {car_make} {car_model}");
store = new ListStore<CarModel>();
rightList.setStore(store);

 Developing with Ext GWT 77

RowData data = new RowData(.5, 1);
data.setMargins(new Margins(5));
cp.add(leftList, data);
cp.add(rightList, data);

new ListViewDragSource(leftList);
new ListViewDropTarget(leftList);

new ListViewDragSource(rightList);
new ListViewDropTarget(rightList);

RootPanel.get().add(cp);

XTemplates
XTemplate is a class that supports advanced functionality for dealing with HTML fragments.
Using XTemplates you can auto-fill data using arrays, and include conditional processing with
basic support for comparison operators, subtemplates, math functions, and variables.
XTemplates can also be compiled so that the fragment is evaluated and a reference saved,
ensuring the fragment can be rendered very quickly whenever needed.

Starting life as an Ext JS feature, XTemplates have been included in GXT so that similar
templating techniques developed in Ext JS can be used in GXT. Documentation on XTemplates
can be found on the Ext JS web site (http://extjs.com/docs).

Chapter 3 outlined an introduction to XTemplates as part of the ListView example. In Listing 4-
11, a simple template was used to map property names into an HTML fragment. That template
was internally used by ListView as the inline display for the list.

Listing 4-11 shows a more concrete example of how templates are used to iterate over the
elements within an array to render HTML directly into a widget’s Element object.

The first two lines build the HTML fragment using the tpl tag and the for operator. If the
variable in the for operator is an array, it will iterate over the text between the tags.

The next lines create an XTemplate instance and an array of names. Those names are converted
to a JavaScriptObject, which is required by XTemplate (as internally it’s optimized Ext
JavaScript code).

Finally, the Html widget is created, and its onRender method overridden, whereby the
XTemplate is told to overwrite the Element with the fragment using the JavaScript array object.

http://extjs.com/docs

78 Developing with Ext GWT

Listing 4-11. XTemplate
String text = "Customer Name: {.}
";
String html = "<tpl for=\".\">"+text+"</tpl>";

final XTemplate t = XTemplate.create(html);
String[] names = { "Tom", "Mary", "Bob", "Jill" };

final JavaScriptObject jsArray
 = JsUtil.toJavaScriptArray(names);

Html h = new Html() {
 protected void onRender(Element target, int index) {
 super.onRender(target, index);
 t.overwrite(target, jsArray);
 }
};
RootPanel.get().add(h);

Summary
Whew! We’ve covered a few advanced things in this chapter. Having a solid understanding of
how layouts work is important, as they are fundamental to how you construct and organize
widgets within GXT. Hopefully the lengthy section on layouts has given you the confidence to
build some advanced, rich Internet applications. The coverage on Forms, Portal, and Drag-n-
Drop rounded out the chapter on advanced stuff.

In the next chapter, I’ll continue the advanced theme, but focus totally on APIs that work with
large amounts of data—Data, Stores, and Loaders—and the widget that displays things, Grid.
This framework helps manage data to and from the server, provides local caching, and provides
a unique way to have introspection in GWT and yet still use POJOs on the server side.

 Developing with Ext GWT 79

Chapter 5: Working With Data
When you build a rich Internet application, you are not just dealing with widgets and visual
layouts: you also need to display and represent data to the user in a manner that is both visually
agile and dynamic, but also structured and measured. This challenge requires efficient
management of local data so that you can quickly and effectively redisplay data shown
previously, but in different ways, such as through sorting, filtering, and grouping, to name a
few.

This chapter covers how GXT provides this flexibility and advanced management of local data
in ways that will truly make your application shine. Using data objects like ModelData and
BeanModel, and local caching systems like stores and loaders, you will be able to take advantage
of the most advanced data widgets—Grid, Table, Tree, and ListView.

Data, Stores, and Loaders
By now you’ve probably seen the mention of data models and stores. In this section, I’m going
to provide a good understanding of how they work. You’ll need that understanding as we
proceed through the rest of the chapter.

Models
GXT uses ModelData as its data type. ModelData objects can be thought of as your User
Interface model (or local domain object), with added support for data introspection. So while
GWT doesn’t support Java reflection, ModelData provides a degree of introspection that allows
the widget to inspect property names and values. This allows a widget to interrogate data
objects without having to have concrete support for any particular data type, providing
separation from the model and view.

BaseModel is the base class that you extend to create your own data model within GXT. Listing
5-1 shows an example data model (CarModel) that you’ll use in the Grid examples later in this
chapter.

80 Developing with Ext GWT

Listing 5-1. CarModel
public class CarModel extends BaseModel {

 public CarModel(String mk, String ml, Integer y) {
 set("car_make", mk);
 set("car_model", ml);
 set("car_year", y);
 }

 public CarModel(String mk, String ml,
 Integer y, Double v) {
 this(mk, ml, y);
 set("car_value", v);
 }

 public String getMake() {
 return (String)get("car_make");
 }

 public Integer getYear() {
 return (Integer)get("car_year");
 }
}

You’ll notice that there are no local fields within the model. All local data is stored within the
BaseModel’s set/get methods, which internally store all data within a HashMap.

Stores
GXT has a concept of a store, which contains a local copy of the data (or model data) that you
wish to display or manipulate. Some data widgets can work directly with this store (like
ListView, Grid, and ComboBox), and some data widgets require an intermediate binding
function to build child data widgets from the store contents (like Table, Tree, and DataList).

Store and its subclasses implement a local cache of the data objects that you would use in your
application. A local cache of the data is maintained so that you can sort, filter, and modify the
data locally. The store uses the event system to notify widgets that new data has arrived or that a
sort has been applied. Widgets that work directly with the store add and remove data objects as
needed, and obtain Record objects to track modifications to data.

 Developing with Ext GWT 81

Caution You need to be realistic about the size of what you can store locally. For
example, manipulating 100,000 records ain’t going to perform very well within the browser. As
such, consider this early in your application design and ensure that only a sensible amount of
data is transferred to the client.

Loaders
Two options exist for getting data into the store. You can manually add data objects directly or
use the GXT Loader. Loaders provide convenient methods for dealing with data obtained via
Remote Procedure Call (RPC), XML, or JSON and converting remote data into ModelData
instances. Loader performs this task by using a proxy to remotely fetch data, and the conversion
is enabled by a reader.

This all sounds fairly complex, and it is, so to help illustrate the relationships, I’ve provided a
diagram in Figure 5-1 that outlines how remote XML data is obtained and manipulated into
something used by a Grid widget.

Figure 5-1. How remote XML data gets into the Grid widget

Remote
Data (XML) HttpProxy XmlReader

StoreModelData
Grid

Widget

BaseListLoader

82 Developing with Ext GWT

The process for JSON or RPC is the same as illustrated in Figure 5-1 for XML, with the only
exception being that RPC does not require a reader—the data objects are already assumed to be
ModelData instances.

This last point raises an interesting question: does this mean if I choose to use RPC, I also use
GXT ModelData objects at my server and transfer them into and out of my domain objects?

The simple answer is, not unless you want to. You can avoid having GXT among server-side
code by using the GXT BeanModel. BeanModel leverages a GWT feature called deferred binding
to eliminate the need for your domain objects (or JavaBeans) to be instances of ModelData.

GWT DEFERRED BINDING—WHAT THE?
Deferred binding is similar to compile-time Java reflection. JavaScript doesn’t
support any kind of runtime introspection, so the GWT team added deferred
binding support to the GWT compiler.

For example, GWT uses this feature for internationalization to ensure only the
English-language Strings are included when the compiler generates
permutations for an English-speaking locale. The String text for French,
German, etc. are not included in the English permutation or the resulting
compiled output, but will be when their respective locales are compiled.

More about deferred binding can be read online in the GWT Developer’s Guide
at http://tinyurl.com/cato89.

Using GWT deferred bindings, a new class is generated that extends BeanModel. This generated
class contains getter/setter implementations for all the field properties of your JavaBean,
essentially creating a new ModelData class based on your domain object. In the client
application, BeanModelReader is used to convert the domain objects into these “deferred
binding”–generated BeanModel objects.

Using BeanModel Objects
There are two ways to identify to GXT that you wish to use BeanModel objects. The first method
requires your JavaBean to implement the BeanModelTag interface. Obviously this method
requires that you modify your existing domain object. A second method does not require any
modification, though it does require creation of a new interface that extends BeanModelMarker
and uses annotations to tie the class to your JavaBean.

To understand this better, let me introduce you to the domain object, Customer, as shown in
Listing 5-2.

http://tinyurl.com/cato89

 Developing with Ext GWT 83

Listing 5-2. The Customer Class
public class Customer {
 private String firstname;
 private String lastname;

 public Customer() {
 }

 public Customer (String firstname, String lastname) {
 setFirstname(firstname);
 setLastname(lastname);
 }

 public String getFirstname() {
 return firstname;
 }

 public void setFirstname(String firstname) {
 this.firstname = firstname;
 }

 public String getLastname() {
 return lastname;
 }
}

Now you need to create a new class that identifies to GXT that you want to generate
BeanModels. To do this, create a new interface class, add an @BEAN annotation, and ensure that it
extends BeanModelMarker. Listing 5-3 provides an example based on the recently created
Customer class .

Listing 5-3. The CustomerBeanModel Interface
@BEAN(com.apress.data.Customer.class)
public interface CustomerBeanModel extends BeanModelMarker {
}

Once you’ve marked your bean as shown Listing 5-3, you’ve done what’s needed to start using
BeanModels. To create a BeanModel instance based on your domain object (perhaps to create a
new customer), you need to use BeanModelFactory to create a model instance. This is
accomplished by using BeanModelLookup to get an instance of BeanModelFactory, as shown in
Listing 5-4.

84 Developing with Ext GWT

Listing 5-4. Creating a CustomerBeanModel
BeanModelFactory factory = BeanModelLookup.get().getFactory(Customer.class);
Customer c = new Customer("Tim","Smith");
BeanModel model = factory.createModel(c);

You’ll be using Customer and CustomerBeanModel in the example application in Chapter 6.

Stores and Loaders
Stores provide local caching of ModelData objects and also support filtering and sorting of those
cached objects. There are two types of stores within GXT: a ListStore designed for lists of data
(like tables, grids, and views), and a TreeStore designed for hierarchical data. As you can guess,
TreeStore is used when the Tree widget is used.

When editing models, the store provides a Record object so that changes to a model can be
tracked. The before and after changes are captured for each model so that you can commit all
changes, or if needed, roll one or all of them back. Using the getRecord(M model) method in
Store, you can obtain the current instance of the Record object. Using the commitChanges() or
rejectChanges() methods, you can tell Store to update or discard the outstanding changes.

Stores use events to communicate changes to store contents. A store listener contains the
following events:

 Add: Data has been added to the store.

 Clear: The store has been cleared of data.

 BeforeDataChanged: This is fired before data changes (e.g., before loading).

 DataChanged: Data has changed (e.g., just loaded).

 Filter: A filter has been applied.

 Remove: Data has been removed.

 Sort: The store has been sorted.

 Update: Data has been updated via its Record.

As previously mentioned, you can load data into ListStore manually using the add(M model) or
add(List<M> models) methods. Getting the data to the client, converting or transferring it into a
ModelData subclass, is also a task that you’ll have to perform.

Alternatively, you can use a loader, which is designed to assist in the correct loading and
converting of data into a store. Similar to stores, BaseListLoader is for lists, and
BaseTreeLoader is for hierarchies. There is also a third type of loader, a paging loader that, as its
name implies, is designed to assist loaders that can page data into the store. This is useful for

 Developing with Ext GWT 85

situations where you just have too much data to provide to the client in a single load.
BasePagingLoader provides an offset and limit against the total data available and produces the
necessary requests to the server to load this data.

Let’s go through an example. Extending the Customer and BeanModel examples, you’ll now set
up a proxy, loader, and reader to configure the ListStore.

Note Previously I mentioned that RPC doesn’t need a reader, and it doesn’t, but
obviously if you are converting from JavaBean domain objects into BeanModel objects you’ll
need something that can convert from one object type into the other, and that is what the
BeanModelReader does.

Listing 5-5. Creating and Configuring the ListStore
RpcProxy proxy = new RpcProxy() {
 public void load(Object loadCfg, AsyncCallback cb) {
 service.getCustomers(callback);
 }
};

BeanModelReader reader = new BeanModelReader();

ListLoader loader = new BaseListLoader(proxy, reader);
Store store = new ListStore<BeanModel>(loader);

Listing 5-5 starts by configuring an RpcProxy and overriding the load(Object,AsyncCallback)
method where you call the GWT RPC service getCustomers. Next, you create the
BeanModelReader, which internally uses the BeanModel factory to create beans from the
returned domain objects. Finally, bind the proxy and reader together with a ListLoader and
assign this loader to the ListStore.

If you are new to GWT development, you’ll probably find the
service.getCustomers(callback) call a little confusing, so let me explain a little more about
GWT RPC services.

GWT RPC
When using RPC, GWT needs to create a system of callbacks so that the returning call from the
server-side Java bytecode is matched to the compiled GWT JavaScript client-side code.

86 Developing with Ext GWT

Like its namesake, RPC is a mechanism for calling methods remotely as if the function or
procedure was local. In GWT, the client calls a method against a service definition that returns
the requesting data via a system of callbacks.

Google provides a detailed explanation of how GWT RPC works in the online GWT
Developer’s Guide (http://tinyurl.com/ajecdo). Figure 5-2 contains a copy of Google’s GWT
RPC plumbing diagram, which outlines the classes that need to be created, their relationship to
other RPC classes, and where these objects are executed (client or server).

Figure 5-2. GWT RPC plumbing diagram

Copyright Google © 2009

Let’s continue the Customer example and step through the setup tasks to start using GWT RPC
for both the client and server parts of the application. Start by defining a service interface that
includes the method you want the client to call and the server to implement, as shown in Listing
5-6.

http://tinyurl.com/ajecdo

 Developing with Ext GWT 87

Listing 5-6. The MyService Interface
public interface MyService extends RemoteService {
 public List<Customer> getCustomers();
}

Note that you define the method exactly how you’d like to be able to use it, returning a list of
Customer objects. Next, define another similar interface with the same methods, but this time
with no return types. You define the parameters of the methods to have an additional item of the
type AsyncCallback, which has a type signature of the return type you defined in the previous
interface (in this case, it’s List<Customer>). Listing 5-7 shows how to do it.

Listing 5-7. The MyServiceAsync Interface
public interface MyServiceAsync {
 public void getCustomers(AsyncCallback<List<Customer>> callback);
}

Now you’re ready to implement the MyService interface for the server. In this step, you create
the class in a separate package for the client code, because you don’t want the GWT compiler to
try and compile this code. It would most likely not compile correctly anyway (mainly because
you’d be using a database or Java API not available in GWT). Here you’ll use the
com.apress.server package, which is the recommended package naming style for GWT server
code, but you can use anything as long as it’s not the com.apress.client package.

Other than extending RemoteServiceServlet and implementing the MyService interface, there is
nothing special about the implementation code. You return the results normally, and you don’t
have to do anything particularly unique with the objects before passing them on to the client.
GWT will take care of the needed transformation and serialization of objects. Listing 5-8 shows
the implementation used in the example.

Listing 5-8. The MyServiceImpl Class
public class MyServiceImpl extends RemoteServiceServlet implements MyService {

 private Map<String, Customer> customers;

 public List<Customer> getCustomers() {
 if (customers == null) {
 loadCustomers();
 }
 return new ArrayList<Customer>(customers.values());
 }
}

88 Developing with Ext GWT

Now that you’ve defined and implemented the server side of things, you need to create a service
object within the client application that communicates with the service running on the server.

GWT provides a set of classes for this, and essentially you only have to plumb things together.
Listing 5-9 outlines the basic steps needed to get the RPC service working in a client
application.

Listing 5-9. Creating an RPC Service
MyServiceAsync service;
String moduleURL = GWT.getModuleBaseURL() + "myService"; service =
(MyServiceAsync) GWT.create(MyService.class);
ServiceDefTarget endpoint = (ServiceDefTarget) service;
endpoint.setServiceEntryPoint(moduleURL);

The first line defines the service object. GWT will generate this with deferred binding using the
MyServiceAsync interface for its definition. In the next line, you create a String that is
essentially the URL that the server will be offering the service on. After this, you ask GWT to
create a MyService object, knowing it will actually be generated on the MyServiceAsync
interface. The last line tells GWT to initialize the service using the URL defined previously.

The final part of this GWT RPC puzzle is to launch the implementation of
RemoteServiceServlet when the embedded web server starts. This allows you to continue
working within the hosted mode shell and test the service implementation along with the client
code. This has recently changed in GWT 1.6 from previous GWT releases. You now create a
standard web.xml file, which simplifies the learning for those who are already familiar with
J2EE container configuration. Located in the /war/WEB-INF folder, this file will look like Listing
5-10.

Listing 5-10. Updated web.xml File
<?xml version="1.0" encoding="UTF-8"?>
<web-app>
 <servlet>
 <servlet-name>myService</servlet-name>
 <servlet-class>com.apress.server.MyServiceImpl</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>myService</servlet-name>
 <url-pattern>/myapp/myService</url-pattern>
 </servlet-mapping>
</web-app>

I won’t fully explain the contents of a web.xml file, as this would be well beyond the scope of
the book. Suffice to say that the url-pattern needs to match the URL in

 Developing with Ext GWT 89

ServiceDefTarget.setServiceEntryPoint, and the servlet-class name needs to match the
fully qualified class name of the service implementation.

We’ve focused a fair bit on enabling the server and client to be able to communicate and share
data; now that this is done, you can continue with some widgets that take advantage of all this
data. Let’s jump into it.

Grid
Grid is a powerful data widget for displaying and editing large lists of related data. Although
similar to the Table widget, Grid provides fast and flexible rendering of data and includes built-
in support for plug-ins, grouping, summary views, full in-place editing, custom column models,
and header menus (supporting hiding, sorting, and grouping). An example of Grid being used to
automatically group related data, configurable by the user, is shown in Figure 5-3.

Figure 5-3. A grouping Grid example

Grid uses ModelData to define which columns display which properties, and relies on the store
to provide a list of ModelData objects. As such, you can either add BaseModelData objects to the
store, or use BeanModel to load your domain objects and display them within a grid.

90 Developing with Ext GWT

Let’s start out with an example the can explain the basic configuration steps when using Grid.

A Basic Grid
While this is a fairly basic example of Grid, it is a bit long, so I’ll break it up into parts. The
code in Listing 5-11 sets up the parent container and the store.

Listing 5-11. Basic Grid: Set Up Parent and Store
LayoutContainer container = new LayoutContainer();
container.setLayout(new FitLayout());

ListStore<CarModel> store = new ListStore<CarModel>();
store.add(CodeSnippet.getCars());
store.sort("car_year", SortDir.ASC);

The first lines create a parent container and set the layout to FitLayout. This will ensure Grid
fills the entire available space. If the parent’s available space is not big enough for either the
columns or rows, Grid will automatically add scroll bars and allow scrolling to occur. You don’t
have to do anything to enable this, other than set a size for the container.

The store is created using CarModel as its type, and data is added to the store by passing it a list
of CarModel objects. This is what the call to CodeSnippet.getCars() does. Lastly, sort the store
on the car_year field property in ascending order.

You now have to define the columns, and Listing 5-12 shows you how.

Listing 5-12. Basic Grid: Set Up Columns
List<ColumnConfig> col = new ArrayList<ColumnConfig>();

ColumnConfig column = new ColumnConfig();
column.setId("car_make");
column.setHeader("Make");
column.setWidth(150);
col.add(column);

column = new ColumnConfig();
column.setId("car_model");
column.setHeader("Model");
column.setWidth(120);
col.add(column);

column = new ColumnConfig();
column.setId("car_year");
column.setHeader("Year");
column.setWidth(80);

 Developing with Ext GWT 91

column.setAlignment(HorizontalAlignment.RIGHT);
col.add(column);

ColumnModel cm = new ColumnModel(col);

First you create an empty array to hold the ColumnConfigs, and then you create three
ColumnConfig objects, using setId to set each column to match the property name set within the
CarModel. You should also provide a header title name and an initial column width. When
finished, the last line adds the array of ColumnConfigs to a ColumnModel, which holds the
configuration for all columns within a Grid.

The final part, shown in Listing 5-13, is to configure the Grid and attach it to RootPanel.

Listing 5-13. Basic Grid: Set Up Grid and Attach
Grid grid = new Grid<CarModel>(store, cm);
grid.setBorders(true);
grid.setStripeRows(true);
grid.getView().setForceFit(true);
GridSelectionModel gsm = grid.getSelectionModel();
gsm.setSelectionMode(SelectionMode.SINGLE);
container.add(grid);

container.setSize(300, 200);
container.setPosition(50,50);
RootPanel.get().add(container);

The Grid widget itself is created, defined with the CarModel type, and passed the store and
ColumnModel. As you’re using a parent container with no border or frame, you’ve enabled the
border on the Grid. Striped rows are enabled, and you tell the Grid’s view that you wish it to
force the columns to expand or contract to avoid showing a horizontal scroll bar. You get a
reference to the Grid’s selection model, and set the selection mode to only select single rows.

Finally, you add the Grid to the parent container, and then size and position the container and
add it to RootPanel. Those three steps are what’s basically required to configure a Grid: set up
the store, set up the columns, and then set up the Grid itself.

EditorGrid
A Grid that can edit its data isn’t significantly more complex. The three steps remain the same,
with an additional consideration around the column configuration. As shown in Figure 5-4, the
EditorGrid overlays a widget that extends Field when editing is required.

92 Developing with Ext GWT

Figure 5-4. First EditorGrid example

To reproduce the example in Figure 5-4, you need to adjust the container, which will now be a
ContentPanel. You’ll also allow the container to resize with the browser window, which
demonstrates that Grid can resize correctly and automatically show scroll bars as needed.
Listing 5-14 provides the code.

Listing 5-14. EditorGrid: Changed Layout and Container
Viewport vp = new Viewport();
vp.setLayout(new AbsoluteLayout());
ContentPanel container = new ContentPanel();
container.setFrame(true);
container.setHeading("EditorGrid");
container.setLayout(new FitLayout());
AbsoluteData ad = new AbsoluteData(40,40);
ad.setAnchorSpec("40% 40%");
vp.add(container, ad);

The code in Listing 5-14 is not really anything specific to EditorGrid, but I wanted to show you
another way to use Grid in a container whereby the container itself is the size constraint, and
Grid itself will decide when to show scroll bars.

In Listing 5-15, you add a listener to the standard store so that you can see when the underlying
data has changed. From this you can be notified when things have been modified, sorted, or
added/removed.

 Developing with Ext GWT 93

Listing 5-15. EditorGrid: Add Store Listener
store.addStoreListener(new StoreListener() {
 public void handleEvent(StoreEvent se) {
 if (se.getType()== Store.DataChanged) {
 System.out.println("DataChanged");
 }
 }
});
...

Listing 5-16 shows what the EditorGrid configuration is mostly about. Start by creating a
TextField object (if needed, you can also set up validation, etc.) and then use it to create a
CellEditor. You do the same thing for NumberField, and create a specific CellEditor for editing
number data.

The final step is to assign setEditor on the columns you wish to make editable.

Listing 5-16. EditorGrid: Add Cell Editors
TextField tf = new TextField<String>();
CellEditor tce = new CellEditor(tf);
NumberField nf = new NumberField();
nf.setPropertyEditorType(Integer.class);
CellEditor nce = new CellEditor(nf);
...
column.setId("car_make");
column.setEditor(tce);
...
column.setId("car_year");
column.setEditor(nce);
...

As far as the Grid itself is concerned, you just change to an EditorGrid, and the rest is fairly
similar. I’ve added some buttons to showcase how you would commit or reject changes within
the store, which occurs after editing a cell. Listing 5-17 shows the EditorGrid change and the
new buttons added to the container.

94 Developing with Ext GWT

Listing 5-17. EditorGrid: Change from Grid, Add Buttons
EditorGrid grid = new EditorGrid<CarModel>(store, cm);
...
Button b1 = new Button("Commit");
b1.addSelectionListener(new SelectionListener<ButtonEvent>() {
 public void componentSelected(ButtonEvent be) {
 store.commitChanges();
 }
});
Button b2 = new Button("Reject");
b2.addSelectionListener(new SelectionListener<ButtonEvent>() {
 public void componentSelected(ButtonEvent be) {
 store.rejectChanges();
 }
});

container.setButtonAlign(HorizontalAlignment.RIGHT);
container.addButton(b1);
container.addButton(b2);

RootPanel.get().add(vp);

This is essentially all that is required for enabling cell-editing support to a Grid, so it seems
fairly straightforward, hey?

Unfortunately, it can get a little more complex. In situations where either your model or the
Field you’d like to use doesn’t natively translate between data types, you’ll need to be able to
preprocess and postprocess the data objects before and after editing.

Fortunately, GXT again comes to the rescue, and I’ve prepared another EditorGrid example that
showcases how this is easily done. In Figure 5-5, you’ll notice we’re now using a ComoBox to
edit data within a Grid.

 Developing with Ext GWT 95

Figure 5-5. Second EditorGrid example

To illustrate both model and editor field mismatches, I’ve created a simple Java enumerated
type to be used in the ModelData object.

Note I love using Enum within Java instead of constant strings or static/final integer
values. I think the code it produces is far more readable and ensures that typed values aren’t
accidentally used incorrectly. In GWT 1.5 and onwards, you have full support for the enum
keyword. You can also substitute the use of enumerated types in GXT if you are careful (and a
little clever). The main trick is to ensure your enum has a toString() method that allows simple
value presentation. As Enum within Java is essentially a class, you can add any type of method
to make things easier.

What follows is the FreqType enumerated type. The code in Listing 5-18 is fairly self-
explanatory, so I won’t detail an explanation.

96 Developing with Ext GWT

Listing 5-18. The FreqType Enumerated Type
public enum FreqType {
 DAILY("Daily"), WEEKLY("Weekly"),
 FORTNIGHTLY("Fortnightly"), MONTHLY("Monthly"),
 QUARTERLY("Quarterly"), YEARLY("Yearly");

 private String name;

 FreqType(String name) {
 this.name = name;
 }

 public String toString() {
 return name;
 }
}

The nice aspect of using Enum with GXT is the simple setup of combo boxes when using
SimpleComboBox. In Listing 5-19, you can see how I’ve been able to set the type as FreqType
and then use the Arrays.asList utility method to populate the combo box.

Listing 5-19. SimpleComboBox Using Enum
freqCombo = new SimpleComboBox<FreqType>();
freqCombo.setEditable(false);
freqCombo.add(Arrays.asList(FreqType.values()));

Now that you’ve got the data type and editable field organized, let’s look at applying this to the
EditorGrid. As mentioned before, you can’t just add the SimpleComboBox to CellEditor like
you did with TextField. If you do, you’ll get a ClassCastException every time you try to edit
the field. So what goes wrong?

CellEditor will call setValue on the field, and the implementation of setValue in
SimpleComboBox expects a ModelData. The value set is obtained from the model, which is a
FreqType instance, so BANG! ClassCastException is thrown.

The solution is to override CellEditor’s preProcessValue method and convert the object into a
type that SimpleComboBox can accept. In Listing 5-20, you’ll see I check that the object is an
instance of FreqType, and if it is, I ask the combo box to find me the internal model and return
that instead.

 Developing with Ext GWT 97

Listing 5-20. EditorGrid: SimpleComboBox and Custom CellEditor
ColumnConfig freq = new ColumnConfig();
freq.setId("freq");
freq.setHeader("Frequency");
freq.setWidth(60);

final SimpleComboBox<FreqType> freqCombo = new SimpleComboBox<FreqType>();
freqCombo.setEditable(false);
freqCombo.add(Arrays.asList(FreqType.values()));
CellEditor freqEditor = new CellEditor(freqCombo) {
 public Object preProcessValue(Object v) {
 if (v instanceof FreqType) {
 return freqCombo.findModel((FreqType)v);
 }
 return FreqType.DAILY;
 }

 public Object postProcessValue(Object value) {
 return ((SimpleComboValue) value).get("value");
 }
};
freq.setEditor(freqEditor);

On the flip side, when you finish editing, it’s time to convert that SimpleComboValue back into
a FreqType model. That’s simply done by calling get("value"). The property “value” is
defined internally to SimpleComboValue to represent the wrapped type value.

This approach can be applied to any model or editable field problem you encounter when you’re
not using simple text or number values in your Grid.

Even More Grid
As a final piece on Grid, let’s build the grouping and summary part of the example grid shown
in Figure 5-3. This code will produce very specific summarized data similar to the rightmost
column shown in Figure 5-6. The Grid’s rendering code will be configured to group similar data
and provide a summary row, adding up the columns during the rendering process.

98 Developing with Ext GWT

Figure 5-6. Summarizing data

Tip Using the grouping and summary features of Grid is a really good design idea. As
all of this data manipulation is handled internally by the local Grid widget, users get a good
degree of flexibility on how the data is presented without having to round-trip back to the server
to reprocess the data they already have. Your users will love you for using this Grid feature!

GXT includes two types of grouping views: GroupingView and GroupSummaryView. They
both group related data using a defined grouping field, but GroupSummaryView adds the ability
to provide a summary row under each set of grouped rows.

To perform the grouping, you need to change to a GroupingStore, which allows you to define a
grouped field and internally supports what’s needed for the views to show grouped data. Listing
5-21 shows how to set up the store and assign the field to group on.

Listing 5-21. GroupingStore
GroupingStore<CarModel> store = new GroupingStore<CarModel>();
store.add(CodeSnippet.getCars());
store.sort("car_year", SortDir.ASC);
store.groupBy("car_year");
...

Next, as you also want to summarize the grouped columns into a summary row, you need to
convert every ColummConfig into a subclass that supports summary configurations—
SummaryColumnConfig.

By default, none of the columns will actually summarize anything unless you set a SummaryType,
which in this example will be SummaryType.SUM for the “car_value” column.

 Developing with Ext GWT 99

SummaryType includes three default actions: SUM, which adds the values together; AVG, which
provides an average; and COUNT, which counts the rows. As you are summarizing $ value
information, you also set the summary format to a currency NumberFormat.

Listing 5-22. SummaryColumnConfig
column = new SummaryColumnConfig();
NumberFormat nf = NumberFormat.getCurrencyFormat();
column.setSummaryFormat(nf);
column.setSummaryType(SummaryType.SUM);
column.setId("car_value");
column.setHeader("$ Value");
column.setWidth(120);
column.setAlignment(HorizontalAlignment.RIGHT);

column.setRenderer(new GridCellRenderer() {
 public String render(ModelData m, String p,
 ColumnData cd, int r, int c, ListStore s) {
 double v = m.get(p);
 String style = "lighttext";
 if (v>15000) style = "redtext";
 return "<div class="+style+">"+v+"</div>";
 }
});
col.add(column);
...

Also in Listing 5-22, you’ll notice I set a custom GridCellRenderer. I did this because I wanted
the values to be formatted differently depending on the value of the car. The line double v =
m.get(p) essentially gets the value from the property (p) using the model (m) and, using Java
auto-boxing, converts it to a primitive type (v).

The lines after this simply determine the value. If the value is larger than some arbitrary value
($15,000), the style changes. All rather simple, yet highly effective in how it displays data to the
user.

The styles are defined in CSS as shown in Listing 5-23.

100 Developing with Ext GWT

Listing 5-23. CSS Styles Used for GridCellRenderer
.lighttext {
 color: #888888;
}

.redtext {
 color: #ff0000;
 font-weight: bold;
}

The final step in enabling a grouped Grid is to create an instance of GroupSummaryView. You
then configure another custom renderer, this time GridGroupRenderer, which is a header row
added above the grouped set. In Listing 5-24, you assemble a string of elements that you want
to display in the group header.

Listing 5-24. GroupSummaryView
GroupSummaryView view = new GroupSummaryView();
view.setForceFit(true);
view.setGroupRenderer(new GridGroupRenderer() {
 public String render(GroupColumnData data) {
 int size = data.models.size();
 String h = cm.getColumnById(data.field).getHeader();
 String itms = size == 1 ? "Item" : "Items";
 itms = " (" + size + " " + itms + ")";
 return h + ": " + data.group + itms;
 }
});
...
grid.setView(view);

The last task is to set the Grid’s view to the GroupSummaryView object. All other aspects of the
grouping and summary Grid configuration are essentially the same as the basic Grid example.

If you construct the example as I’ve shown, it won’t have the yellow striped rows and the
orange summary rows and column shown in Figure 5-3 unless your application has some
additional style information.

This style is achieved using custom CSS to override some of the existing GXT styles. The styles
in Listing 5-25 are added by the application’s local CSS, in this particular case
CodeSnippet.css.

As you also want to apply a style to a dynamically generated column (the column assigned the
ID of “car_value”), you have to simulate that generated style, labeled x-grid3-td-car_value, in
your CSS.

 Developing with Ext GWT 101

Listing 5-25. Override CSS for GroupSummaryView
.x-grid3-row-alt{background-color:#FFFFCC;}

.x-grid3-body .x-grid3-td-car_value {
 background-color: #FFEEAA;
 border-right: 1px solid #FFFFFF;
}

.x-grid3-summary-row {
 background: #FFEEAA none repeat scroll 0% 50%;
 border-left: 1px solid #FFFFFF;
 color: #333333;
}

.x-grid3-summary-row .x-grid3-cell-inner {
 font-weight: bold;
 padding-bottom: 4px;
}

Note An explanation of the CSS used in Listing 5-25 is beyond the scope of the book,
but suffice to say that most web developers should be able to assist in the CSS tuning and
tailoring needed to obtain the better effects shown in this example. The important point of this
example is to show what can be done with a combination of the base GXT widgets and some
additional CSS modifications.

The best way to play with and modify styles is to use the Firefox developer tool, called Firebug,
which allows you to change style values and instantly see the results. This can show you what
does and doesn’t work when changing styles. It also shows you which internal GXT styles are
being applied to a particular part of a widget.

Binders: Table, Tree, and TreeTable
As mentioned previously, there are a few widgets that do not support stores or ModelData
directly. These widgets require you to either manually construct their child components yourself
or utilize the Binder objects to bind a store and provide model support for child widgets
automatically.

102 Developing with Ext GWT

The com.extjs.gxt.ui.client.binder package contains five binders, each tailored to bind a
store to a particular data widget. These binders follow:

 DataListBinder

 DataViewBinder

 TableBinder

 TreeBinder

 TreeTableBinder

Figure 5-7 provides an introduction to binders by illustrating an example of using the Tree
widget with TreeBinder.

Figure 5-7. Tree using TreeBinder

Tree is a hierarchical data widget, and therefore this will require a hierarchical implementation
of store, such as TreeStore. Additionally, you need to have a ModelData implementation that
understands the concept of parent and child nodes, such as BaseTreeModel.

Constructing the relationship is fairly logical, and Listing 5-26 outlines what you’ll use in
Listing 5-27.

Listing 5-26. BaseTreeModel
BaseTreeModel btmParent = new BaseTreeModel();
btmParent.set("name", "Parent’s Display Name");

BaseTreeModel btm = new BaseTreeModel();
btm.set("name", "1st Child’s Display Name ");
btmParent.add(btm);

 Developing with Ext GWT 103

btm = new BaseTreeModel();
btm.set("name", "2nd Child’s Display Name ");
btmParent.add(btm);

...
modelArrayList.add(btmParent);

When you’ve created all your parents and added the child models to them, you can then add all
the parents to TreeStore.

Listing 5-27. TreeStore
TreeStore<BaseTreeModel> store;
store = new TreeStore<BaseTreeModel>();
store.add(CodeSnippet.getTreeModels(), true);

You then create an instance of a Tree widget, and define some of its style information. In this
case, you set an icon to display against the leaf child nodes (models that have no children
themselves).

Listing 5-28. Tree
Tree tree = new Tree();
tree.getStyle().setLeafIconStyle("icon-email");

The final step is to create a TreeBinder and bind the Tree and store. You tell the binder to
automatically load all children as needed and set the display property so that the TreeItems have
the correct display label.

The last line initializes the binder and builds the tree.

Listing 5-29. TreeStore
TreeBinder binder = new TreeBinder(tree, store);
binder.setAutoLoad(true);
binder.setDisplayProperty("name");
binder.init();

So, apart from adding the Tree to a container and attaching it to RootPanel, there is no further
configuration needed.

Of course, this only provides an introduction to Tree, and there are many other useful things you
can do (such as combining it with Drag-n-Drop, menus, and events).

104 Developing with Ext GWT

Summary
At roughly a fifth of the book’s content, we covered a lot of complex examples: stores, models,
and loaders, combined with an introduction to GWT’s RPC mechanism. We then jumped into
Grid and covered editing, grouping, and summary support. We finally ended with an
introduction to Binder and a Tree example.

I have no doubt that, by now, you’re ready to see all this new GXT information assembled into
a full working example. In the next chapter, we’ll combine most of what you’ve seen here, plus
a few new tricks, into a customer contacts database.

 Developing with Ext GWT 105

Chapter 6: A Working Example
In this final chapter we’ll step through a complete, functional application. Modeled on a typical
customer contact database application, it is titled “myCustomerContacts,” as shown in Figure 6-
1. This application allows users to search for existing users (by name, address, or e-mail), add or
delete users, and update existing customer records.

The application will mainly use widgets you’ve seen in previous chapters, plus a few new
widgets that are easier to explain in a full working example. You’ll also get a better
understanding of how to use widgets together, binding common functionality to achieve a rich
Internet application experience with a minimum of coding effort.

Figure 6-1. The myCustomerContacts application

106 Developing with Ext GWT

myCustomerContacts Application—What’s New?
The application contains many widgets and components that have been covered in the previous
chapters, but also some new things that haven’t been covered so far. These are as follows:

 FormBinding: The ability to bind forms and fields to stores.

 Charts: A new feature in GXT 2.0 that adds a full interactive charting widget.

 Store updates: Data that is modified is committed back to the server.

The code discussed in this chapter was added to the base MyApp project created in Chapter 2,
keeping as much of that application’s setup and configuration as possible. As such, only the
most significant and relevant changes will be covered, though you can still get the application
running as the full and working source is provided with the book.

You can see a full and working version of this application by visiting
http://extjs.com/myCustomerContacts.

When Loading
When GWT applications get larger, there is sometimes a delay while the application code and
resources are loaded and executed. To provide the user with a response during this delay, you
can add a loading HTML fragment, as shown in Figure 6-2.

Figure 6-2. Loading fragment

This HTML is within the static page and will be rendered by the browser almost immediately,
before any JavaScript is loaded or executed. The HTML fragment is placed within the <body>
elements of the page.

Listing 6-1 provides the code to build the HTML fragment.

http://extjs.com/myCustomerContacts

 Developing with Ext GWT 107

Listing 6-1. Loading HTML Fragment
<style>
#loading {
position: absolute; left: 45%; top: 40%; padding: 2px;
margin-left:-45px; z-index:20001; border:1px solid #ccc;
}
#loading .loading-indicator {
background:#eef;font:bold 13px tahoma,arial,helvetica;
padding:10px;margin:0;height:auto;color:#444;
}
#loading .loading-indicator img {
margin-right:8px; float:left; vertical-align:top;
}
#loading-msg {font:normal 10px arial,tahoma,sans-serif;}
</style>
<div id="loading">
<div class="loading-indicator">

myCustomerContacts

Loading application...
</div>
</div>

Note The CSS associated with this loading HTML fragment also needs to be
embedded in the same HTML page, otherwise it will not render completely until the required
CSS resource has loaded. While this is not a best practice for web applications, to ensure you
get your loading page to show as soon as possible, you need to make sure all resources are
available as easily and quickly as possible.

Customer Data
Any application needs to work with data, and typically you should define this in advance. We’ll
continue to build on the Customer data model created in Chapter 5, and add a few more data
types.

The class fields in Listing 6-2 have typical setters/getters, along with an appropriate class
constructor to simplify Customer object creation.

108 Developing with Ext GWT

Listing 6-2. Customer Fields
 private String email;
 private String address;
 private boolean male;
 private SizeTypes shirt;
 private int subscriptions;

The shirt field is a SizeTypes data type, which is an enumerated type that provides a flexible
way to deal with shirt sizes. To facilitate simpler use with GXT, a toString method that returns
the display text of the size was added. This type is defined in Listing 6-3.

Listing 6-3. SizeTypes Enumerated Type
public enum SizeTypes {

 SMALL("Small"), MEDIUM("Medium"),
 LARGE("Large"), XTRA_LARGE("Xtra Large");

 private String size;

 SizeTypes(String size) {
 this.size = size;
 }

 public String toString() {
 return size;
 }
}

The subscriptions field, a simple integer value, also has an enumerated type that assists with the
conversion and handling of subscriptions. MarketingTypes is defined in Listing 6-4.

Listing 6-4. MarketingTypes Enumerated Type
public enum MarketingTypes {

 BROCHURES(0x1,"Brochures"), EVENTS(0x2,"Events"),
 ANNOUNCEMENTS(0x4,"Announcements");

 private int type;
 private String name;

 MarketingTypes(int type,String name) {
 this.type = type;
 this.name = name;
 }

 Developing with Ext GWT 109

 public int intValue() {
 return type;
 }

 public String toString() {
 return name;
 }
}

Keeping Data Independent
In Chapter 5 I discussed the benefit of using the GXT BeanModel and how it is possible to use
domain objects without having to transfer data into (and out of) ModelData objects, letting GWT
do the heavy lifting of generating new data types for use with GXT.

In this application, the Customer object and the related data types are all located in an
independent package, allowing the server implementation to be completely independent of
GXT. Technically, the server implementation does not need a reference to anything other than
the GWT servlet code and the previously defined data types.

To enable this independent package scope within the GWT client application, add the following
lines to the GWT XML module file:
<module rename-to='myapp'>
 ...
 <source path="data"/>
 <source path="client"/>
</module>

Classes associated with the data model can now be located in the package com.apress.data,
keeping our data and client code independent.

Layout and Construction
Visually, the application has four panels: a title shown at the top, a list of customers on the left
side, and a panel on the right side that contains two panels—the top half a form and the bottom
half a chart.

Nested layouts are used to achieve this result, as shown in Figure 6-3, and are combined
together to attain the layout and panel behavior desired for this kind of application.

Specifically, two BorderLayouts are arranged such that the first handles the outer northern,
center, and eastern regions; and the second is within the eastern region, handling the inner
northern and center regions.

110 Developing with Ext GWT

The outer eastern region and the inner northern region are configured with split bars so that you
can resize the regions, but a constraint on the minimum sizes keeps the “3. Form” panel at a size
suitable for viewing its fields.

Figure 6-3. The layout

North

Center East

North

Center

1. Application Heading1. Application Heading

2. Customer List2. Customer List

3. Form3. Form

4. Chart4. Chart

Internally, the application is constructed using sections of code focused on the following tasks:

 onModuleLoad: The initial entry point section defined by GWT.

 prepareServices: Configures services and prepares the local store.

 buildMainLayout: Configures/builds the application nested layouts.

 buildGridPanel: Configures and constructs the Grid panel.

 buildFormPanel: Configures and constructs the Form panel.

 buildChartPanel: Configures and constructs the Chart panel.

 showNewDialog: Creates and shows a dialog.

Only a small amount of CSS has been used to demonstrate that most of the visual configuration
can be performed with the base GXT widgets and components.

 Developing with Ext GWT 111

The major addition to the CSS is the appHeading style, which places an image, and sets the
background color, text color, text size, and margins and padding needed to show the application
title correctly.

Also, three icons that are used by buttons within the application have been added. Adding icons
via CSS was covered in Chapter 3.

Listing 6-5 outlines the code for these additions.

Listing 6-5. MyApp.css
* {
 font-family: arial, helvetica, tahoma, sans-serif;
}
.text {
 font-size: 12px;
}
.appHeading {
 background:#15428B url(images/user.png) no-repeat center left !important;
 color:#ffffff;
 font-size:20px;
 font-weight:bold;
 padding:2;
 margin-bottom:2;
 text-indent:15px
}
.icon-new {
 background: url(images/new.gif) no-repeat center left !important;
}
.icon-delete {
 background: url(images/delete.gif) no-repeat center left !important;
}
.icon-update {
 background: url(images/update.png) no-repeat center left !important;
}

When the Module Loads
The public method onModuleLoad is where all GWT (and GXT) applications begin, the main
entry point to the application. This section is the core part of our application where we build,
configure, and connect our application components together.

The first thing you need to do before any GXT widget is created is configure the theme you
wish to use. In this case, the default theme for our application will be Blue. Ensure that the
setting is forced, to override any previous theme preference saved in the StateManager.

112 Developing with Ext GWT

Next, you call all of the other application sections: prepare the services, create a Viewport,
construct and build the main layouts (the Grid, Form, and Chart panels), and then attach the
Viewport to the GWT RootPanel.

Attaching the Viewport renders the application. This is always a good place to remove the
HTML loading message using a static GXT method, which hides the tag with an ID of loading,
including all children—effectively hiding the entire loading HTML fragment.

Finally, you ask the store’s loader to load the data from the remote server. This is performed
last to ensure the application has had a chance to render before you start requesting data. Listing
6-6 shows the complete onModuleLoad code.

Listing 6-6. onModuleLoad Listing
public void onModuleLoad() {
 GXT.setDefaultTheme(Theme.BLUE, true);

 prepareServices();
 Viewport viewport = new Viewport();
 buildMainLayout(viewport);
 buildGridPanel();
 buildFormPanel();
 buildChartPanel();
 RootPanel.get().add(viewport);
 GXT.hideLoadingPanel("loading");

 loader.load();
}

Preparing for Services
In this section of code, you establish the client side of the RPC service definitions. The services
are described later in this chapter, but essentially the server implementation is similar to what
we covered in Chapter 5.

The code in Listing 6-7 sets up the service definition and sets the service entry point, which
matches the configured service within the Servlet web.xml configuration file. The code in
Listing 6-8 is a fairly typical GWT RPC client configuration for a service.

Listing 6-7. Setup Services
service = (MyServiceAsync) GWT.create(MyService.class);
ServiceDefTarget endpoint = (ServiceDefTarget) service;
String moduleRelativeURL = GWT.getModuleBaseURL();
moduleRelativeURL += "myService";
endpoint.setServiceEntryPoint(moduleRelativeURL);

 Developing with Ext GWT 113

Next, you configure RpcProxy, Reader, and ListLoader to use BeanModel types. RpcProxy is set
up to call getCustomers(), which is defined in the service interfaces. Listing 6-8 is similar to
what you saw in Chapter 5.

Listing 6-8. Configure Proxy, Reader, and Loader
RpcProxy<BeanModel> proxy = new RpcProxy<BeanModel>() {
 @Override
 public void load(Object loadConfig,
 AsyncCallback callback) {
 service.getCustomers(callback);
 }
};
BeanModelReader reader = new BeanModelReader();
loader = new BaseListLoader(proxy, reader);

When you configure the store, use GroupingStore so that you can group on “shirt.” You should
also add a StoreListener so that you can update a status bar and/or Chart panel based on the
changed contents of the store.

Listing 6-9 demonstrates how to configure the store.

Listing 6-9. Configure Store
store = new GroupingStore<BeanModel>(loader);
store.groupBy("shirt");
store.addStoreListener(new StoreListener<BeanModel>() {

public void storeRemove(StoreEvent<BeanModel> se) {
 updateStatus();
 updateChartTask.delay(DEFAULT_DELAY);
}

public void storeUpdate(StoreEvent<BeanModel> se) {
 if (se.getRecord().isModified("shirt")) {
 updatingStore = true;
 store.groupBy("shirt", true);
 grid.getView().refresh(false);
 updatingStore = false;
 }
 updateStatus();
 updateChartTask.delay(DEFAULT_DELAY);
}

public void storeDataChanged(StoreEvent<BeanModel> se) {
 if (!updatingStore) {
 updateStatus();

114 Developing with Ext GWT

 updateChartTask.delay(DEFAULT_DELAY);
 }
}

public void storeFilter(StoreEvent<BeanModel> se) {
 updateChartTask.delay(DEFAULT_DELAY);
}
});

updateChartTask = new DelayedTask(new Listener() {
 public void handleEvent(BaseEvent be) {
 updateChart();
 }
});

The implementation of updateChart is provided later in this chapter. The updateStatus code
essentially refreshes a status message and, like the updateChart method, is performed when the
store data changes.

In the StoreListener code in Listing 6-9, you will see that within the storeUpdate method is a
detection of the change to a particular property field within the model, in this case, “shirt.”
When this field is modified, you also have to regroup the store, and this in turn generates
Store.DataChanged events. To avoid updating twice, an updating flag is used to ignore the
additional event.

Also, a GXT DelayedTask is used to dampen repeated update events that would update the
chart. DelayedTask is essentially a more useful implementation of GWT Timer: it cancels the
existing timer if DelayedTask.delay(int) is called again. In the full listing, DEFAULT_DELAY is
given a value of 500, which is half a second.

Note Why did you have to regroup the store? When you modify the property value that
GroupingView is using to group by, you need to regroup the store so that the modified row is
sorted correctly within it. GroupingStore is really a special-purpose, sorted store, and this
regroup ensures all related “grouped” fields are logically grouped together.

In Listing 6-10, the number of modified records is obtained from the store. If the number is
more than zero, the status text is updated and the update button is enabled; otherwise, the status
text is cleared and the button is disabled.

 Developing with Ext GWT 115

Listing 6-10. Update Status
private void updateStatus() {
 int numModRec = store.getModifiedRecords().size();
 if (numModRec > 0) {
 gridButBar.getUpdateButton().setEnabled(true);
 gridButBar.setStatusText(numModRec + " rows modified");
 } else {
 gridButBar.getUpdateButton().setEnabled(false);
 gridButBar.setStatusText("");
 }
}

The preparation of services is complete. In summary, you set up the service definitions; plug the
Proxy, Reader, and Loader together; and create a GroupingStore with an appropriate listener
defined to notify you when certain store events occur.

Building the Main Layout
The main layout is constructed in three steps: set up the main panels (or containers), configure
the inner layout, and finally set up the outer layout.

Listing 6-11 shows the code associated with setting up the panels, which is fairly generic.

Listing 6-11. Set Up the Panels
LayoutContainer inner = new LayoutContainer();
LayoutContainer appHeading = new LayoutContainer();
appHeading.addText("myCustomerContacts v1.0");
appHeading.addStyleName("appHeading");
gridPanel = new ContentPanel();
gridPanel.setHeading("Grid: Customer List");
gridPanel.setBodyBorder(false);
formPanel = new FormPanel();
formPanel.setHeading("Form: Edit Details");
chartPanel = new ContentPanel();
chartPanel.setHeading("Chart: Shirt Size Distribution");

Using the style tag appHeading, defined in CSS, places all image, style, and color information
outside of the code and allows a developer to update this information without having to
recompile the application—an important aspect of any web development.

Listing 6-12 configures the layouts and sets the minimum and maximum sizes for the regions.

116 Developing with Ext GWT

Listing 6-12. Configure the Inner Layout
BorderLayoutData inNorth = new BorderLayoutData(LayoutRegion.NORTH, 320);
inNorth.setMinSize(320);
inNorth.setMaxSize(600);
inNorth.setSplit(true);
BorderLayoutData inCenter = new BorderLayoutData(LayoutRegion.CENTER);
inCenter.setMargins(new Margins(5, 0, 0, 0));
inner.setLayout(new BorderLayout());
inner.add(formPanel, inNorth);
inner.add(chartPanel, inCenter);

Listing 6-13 configures the outer layout, again setting the minimum and maximum allowable
sizing for the region. This is important because you need to keep a minimum amount of size to
correctly display the form’s fields. Allowing the region to become too small will result in some
fields being removed from the form (and will obviously make the form unusable).

The last part of Listing 6-13 actually adds the panels to the Viewport and completes the high-
level main layout of the application.

Listing 6-13. Configure the Outer Layout
BorderLayoutData north = new BorderLayoutData(LayoutRegion.NORTH, 30);
north.setMargins(new Margins(5, 5, 0, 5));
BorderLayoutData outCenter = new BorderLayoutData(LayoutRegion.CENTER);
outCenter.setMargins(new Margins(5));
BorderLayoutData east = new BorderLayoutData(LayoutRegion.EAST, 400);
east.setMinSize(400);
east.setMaxSize(600);
east.setSplit(true);
east.setMargins(new Margins(5, 5, 5, 0));
viewport.setLayout(new BorderLayout());
viewport.add(appHeading, north);
viewport.add(gridPanel, outCenter);
viewport.add(inner, east);

Building the Grid Panel
As shown in Figure 6-4, the Grid panel is conceptually constructed with three sets of widgets.

First is a ToolBar with a StoreFilterField and SimpleComboBox. These widgets provide
filtering support to aid in searching or restricting the available models within the store. Second
is the grid itself, configured with GroupingView. Third, a row of buttons is added to the panel.

 Developing with Ext GWT 117

Figure 6-4. The Grid panel

1

2

3

ToolBar is set as the panel’s top component. The grid is just added to the panel set with a
FitLayout, and the buttons are added as part of the panel’s built-in button bar.

After the ToolBar is created, the filter, combo box, and appropriate labels are added together.

Listing 6-14 shows the code associated with creating the ToolBar.

Listing 6-14. Creating a ToolBar
// build the toolbar
ToolBar bar = new ToolBar();
bar.add(new LabelToolItem("Filter:"));
bar.add(field);
bar.add(new LabelToolItem("Using:"));
bar.add(filterUsing);

SimpleComboBox is not really anything new. The idea of this combo box is to allow the user to
choose what aspect of the Customer data to filter on—Name, Email, or Address.

118 Developing with Ext GWT

Listing 6-15 shows the code associated with creating the SimpleComboBox.

Listing 6-15. Creating a SimpleComboBox
final SimpleComboBox<String> filterUsing = new SimpleComboBox<String>();
filterUsing.setEditable(false);
filterUsing.setWidth(100);
filterUsing.add("Name");
filterUsing.add("Email");
filterUsing.add("Address");
filterUsing.setSimpleValue("Name");

The StoreFilterField is essentially a text field, which is bound to a store so that it can filter the
store’s contents based on the text entered.

StoreFilterField does the filtering based on the return value of its doSelect method. In Listing 6-
16, depending on the selected value of the SimpleComboBox (filterUsing), the associated
model values will be matched against the filter’s String value—true is returned if a match is
found.

Listing 6-16 shows the code associated with creating the StoreFilterField.

Listing 6-16. Creating a StoreFilterField
StoreFilterField<BeanModel> field = new StoreFilterField<BeanModel>() {
 protected boolean doSelect(Store<BeanModel> store,
BeanModel parent, BeanModel record, String property, String filter) {
 Customer cust = record.getBean();
 switch (filterUsing.getSelectedIndex()) {
 case 0:
 String firstname = cust.getFirstname().toLowerCase();
 if (firstname.startsWith(filter.toLowerCase())) {
 return true;
 }
 String lastname = cust.getLastname().toLowerCase();
 if (lastname.startsWith(filter.toLowerCase())) {
 return true;
 }
 break;
 case 1:
 String email = cust.getEmail().toLowerCase();
 if (email.indexOf(filter.toLowerCase()) != -1) {
 return true;
 }
 break;
 case 2:
 String addr = cust.getAddress().toLowerCase();

 Developing with Ext GWT 119

 if (addr.indexOf(filter.toLowerCase()) != -1) {
 return true;
 }
 break;
 }
 return false;
 }
};
field.setWidth(200);
field.bind(store);

Then the parts needed for a functioning grid with a GroupingView are built and created. We’ve
covered grids fairly comprehensively previously, so Listing 6-17 only shows a section where a
custom GridCellRenderer is used.

Listing 6-17. Constructing the Grid: Columns
column = new ColumnConfig();
column.setId("male");
column.setHeader("Sex");
column.setRenderer(new GridCellRenderer<BeanModel>() {
 public String render(BeanModel model, String property, ColumnData config, int
rowIndex,
 int colIndex, ListStore<BeanModel> store) {
 boolean b = (Boolean) model.get(property);
 return b ? "Male" : "Female";
 }
});
column.setWidth(50);
columns.add(column);

In Listing 6-17, the model contains a Boolean value that you want to render as Male or Female
instead of true or false. This is performed by obtaining the model value and, depending on the
value, returning the text you wish to display in the column.

Listing 6-18 shows the construction of the GroupingView.

120 Developing with Ext GWT

Listing 6-18. Constructing the Grid: GroupingView
GroupingView view = new GroupingView();
view.setGroupRenderer(new GridGroupRenderer() {
 public String render(GroupColumnData data) {
 int s = data.models.size();
 String f = cm.getColumnById(data.field).getHeader();
 String l = s == 1 ? "Item" : "Items";
 return f + ": " +data.group+ " (" +s+ " " +l+ ")";
 }
});
view.setForceFit(true);
view.setShowGroupedColumn(false);

The GridGroupRenderer is similar to the GridCellRenderer used previously. The returned value
produces text like Shirt: Large (6 items).

The view is also told to force column widths to fit all the available space and hide the column
that is grouped.

OK, we’re up to the creation of the grid itself.

The view is set, and the selection mode is set to SINGLE. Now you add a selection listener that
assigns a global field selectedModel. That way, you always know which model is currently
selected (which is important for when the user selects the delete button).

If the selected model is not null (something has been selected), bind the form to the current
model. If the selected model is null (nothing is selected), unbind the form and disable it. The
delete button’s enabled state is also toggled based on the selected model value.

Note FormBinding, what it is and how it works, is explained later in the “Building the
Form Panel” section.

Listing 6-19 shows the construction of the grid.

Listing 6-19. Constructing the Grid: The Grid
grid = new Grid<BeanModel>(store, cm);
grid.setView(view);
grid.getSelectionModel().setSelectionMode(SelectionMode.SINGLE);
grid.getSelectionModel().addListener(Events.SelectionChange,
 new Listener<SelectionChangedEvent<BeanModel>>() {
 public void handleEvent (SelectionChangedEvent<BeanModel> be) {

 Developing with Ext GWT 121

 selectedModel = be.getSelectedItem();
 if (selectedModel != null) {
 formBindings.bind(selectedModel);
 formPanel.setEnabled(true);
 gridButBar.getDeleteButton().setEnabled(true);
 } else {
 formPanel.setEnabled(false);
 formBindings.unbind();
 gridButBar.getDeleteButton().setEnabled(false);
 }
 }
});

Listing 6-20 shows that building the panel is simply a matter of setting the layout then adding
the toolbar and grid. The update and delete buttons are initially disabled. Certain events within
the application will enable these buttons for use when appropriate.

Listing 6-20. Building the Grid Panel
gridPanel.setLayout(new FitLayout());
gridPanel.setTopComponent(bar);
gridPanel.add(grid);
gridPanel.setButtonAlign(HorizontalAlignment.LEFT);
gridButBar = new GridButBar(gridPanel);
gridButBar.getUpdateButton().setEnabled(false);
gridButBar.getDeleteButton().setEnabled(false);

To simplify access to the three buttons added to the panel, a GridButBar class is used to
basically create the buttons and hold the implementation of the selection events. Listing 6-21
outlines the GridButBar utility class.

Listing 6-21. GridButBar
public GridButBar(ContentPanel cp) {
 updBut.setIconStyle("icon-update");
 newBut.setIconStyle("icon-new");
 delBut.setIconStyle("icon-delete");
 cp.addButton(newBut);
 cp.addButton(delBut);
 cp.addButton(updBut);
 cp.addButton(new ButtonAdapter(statusMsg));

 updBut.addSelectionListener(...
 ...);

 newBut.addSelectionListener(...
 ...);

122 Developing with Ext GWT

 delBut.addSelectionListener(...
 ...);
}

public Button getUpdateButton() {
 return updBut;
}

public Button getNewButton() {
 return newBut;
}

public Button getDeleteButton() {
 return delBut;
}

public void setStatusText(String text) {
 statusMsg.setHtml(text);
}

The missing addSelectionListener code for the buttons in Listing 6-21 is discussed later in the
“Additional Bits” section, which covers what happens when an existing customer is deleted or
updated, and when a new customer is created.

Building the Form Panel
FormBinding is a feature of GXT that hasn’t been covered previously, so it’s suitable to provide
further explanation.

Using FormBinding (and FieldBinding), you can bind the change events of fields directly to a
store and get live updating between the form and anything else, such as a grid, also using the
store.

If all of your fields are simply text or number fields within a FormPanel and don’t require
validation, then you can use the auto-bind feature of FormBinding. Unfortunately, our
application doesn’t meet either requirement, so the application fields need to be manually
added.

For a simple model and plain text field with no validation, use the code that follows:
TextField ln = new TextField();
ln.setName("lastname");
ln.setFieldLabel("Last name");
formBindings.addFieldBinding(new FieldBinding(ln, "lastname"));

 Developing with Ext GWT 123

As shown in Figure 6-5, the application uses field validation (such as the First name field not
allowing blank values, and the Email field only allowing correctly formatted e-mail addresses).

Figure 6-5. The Form panel

In the case of fields like the Male and Female radio buttons, you need to map the correct
behavior back to the model based on the field values. So for the Male radio button, the value of
true is already correct. For the Female radio button, you need to flip the Boolean value by
setting the FieldBinding with a convertor, as shown in Listing 6-22.

Listing 6-22. Setting the FieldBinding with a Convertor
final Radio femaleRadio = new Radio();
femaleRadio.setName("radio");
femaleRadio.setBoxLabel("Female");
formBindings.addFieldBinding(new FieldBinding(femaleRadio, "male"));
formBindings.getBinding(femaleRadio).setConvertor(new Converter() {
 public Object convertModelValue(Object value) {
 return !((Boolean) value);
 }

 public Object convertFieldValue(Object value) {
 return !((Boolean) value);
 }
});

124 Developing with Ext GWT

This will swap the changed Boolean state–obtained field and correctly set the model with the
right value for this field.

For the SimpleComboBox that uses the SizeTypes data type, there is a GXT-supplied
SimpleComboBoxFieldBinding that already knows how to deal with SimpleComboBox fields.

For the CheckBox fields, things get a little more complex. You need to convert from a Boolean
checked value into a bitwise integer. To achieve FieldBinding support, you need to pass in some
information about what each CheckBox field represents (in this case, it is that bitwise data) as
follows:
check1.setData("bitvalue", 1);
...
check2.setData("bitvalue", 2);
...
check3.setData("bitvalue", 4);

Then you add a custom FieldBinding for each CheckBox field, as follows:
formBindings.addFieldBinding(new CustFldBnd(check1, "subs"));
formBindings.addFieldBinding(new CustFldBnd(check2, "subs"));
formBindings.addFieldBinding(new CustFldBnd(check3, "subs"));

The last part of the puzzle is the implementation of CustFldBnd. Listing 6-23 shows the custom
FieldBinding code that correctly builds model or field values based on which CheckBox was
selected and the model’s original value.

Listing 6-23. Custom FieldBinding: CustFldBnd
public class CustFldBnd extends FieldBinding {
 public CustFldBnd(Field field, String property) {
 super(field, property);
 }

 public Object onConvertModelValue(Object value) {
 int bitvalue = (Integer) field.getData("bitvalue");
 return ((Integer) value & bitvalue) == bitvalue;
 }

 public Object onConvertFieldValue(Object value) {
 int bitvalue = (Integer) field.getData("bitvalue");
 int sub = (Integer) model.get(property) & ~bitvalue;
 sub |= ((Boolean) value ? bitvalue : 0);
 return new Integer(sub);
 }
}

 Developing with Ext GWT 125

The CustFldBnd class performs a similar function to the convertor used in the radio button field,
but in this case, you are able to gain access to the underlying Field object when converting
between the model value and the field value (and vice versa). As the Field object is accessible,
the bitvalue can be obtained from the Field’s getData method. The bitvalue is used to
determine if that particular CheckBox field should be enabled or, if it was, what the resulting
integer value should be.

Building the Chart Panel
Charts are a very new feature added in GXT 2.0. Unfortunately, there is not enough space to
cover every possible chart type and feature, but you should be able to set up and configure most
charts after this brief introduction and the example shown in the application.

The Chart widget is built on the OpenFlashChart library made available to the open source
community. More information on this Flash library can be found at
http://teethgrinder.co.uk/open-flash-chart-2/.

The GXT team has taken this Flash object and provided a comprehensive, interactive charting
solution that can fully integrate with the GXT event system and the Store and ModelData data
framework, and can be used like any other GXT widget.

Adding support for charts requires that you add the module inheritance in Listing 6-24 to your
project.

Listing 6-24. MyApp.gwt.xml
<module rename-to='myapp'>
 ...
 <inherits name='com.extjs.gxt.charts.Chart' />
 ...
</module>

As shown in Figure 6-6, the application in this book is using a simple pie chart and graphically
illustrates the distribution of shirt sizes across all customers. When data is updated within the
store (either through FormBinding or new/deleted rows), the chart is updated instantly.

http://teethgrinder.co.uk/open-flash-chart-2/

126 Developing with Ext GWT

Figure 6-6. The Chart panel

All charts can either be given JSON configuration data (based on the OFC API) or can use a
GXT ChartModel that will process and build a JSON data string suitable for the OFC chart. The
GXT ChartModel assists with building correctly formatted JSON data and saves you from
having to remember the OFC API—you can simply set values as needed and achieve excellent-
looking results with limited knowledge of the OFC API.

The Chart panel is not a complex configuration and simply uses FitLayout to position a Chart
widget completely within the panel’s available space.

Listing 6-25 shows how the panel is configured.

Listing 6-25. Building the Chart Panel
chartPanel.setLayout(new FitLayout());
chartPanel.setFrame(true);
chart = new Chart();
chartPanel.add(chart);
updateChart();

The real configuration details of the chart are within the updateChart() method, which is called
when data is updated within the store.

In Listing 6-26, you’ll see that when the chart is updated, the numShirts array that contains an
accumulated count of each instance of SizeTypes within all the models is built. To achieve this,
a list of models is obtained from the store and individually iterated over. This is one of the
reasons why the updateChart method is called within a DelayedTask—not doing so will result
in this code section being executed repeatedly, potentially producing a negative impact on
browser performance.

 Developing with Ext GWT 127

The next part of Listing 6-26 builds a ChartModel and sets various options, such as background
color and legend configuration. A PieChart object is created and configured, and then pie slices
are added for every instance of SizeTypes. The value of each Slice is set via the numShirts
array obtained previously. The label is obtained from the toString value of the SizeTypes data
type.

Lastly, the ChartModel is given a chart configuration (the PieChart object), and the Chart widget
is updated with the newly created ChartModel.

Listing 6-26. updateChart
int[] numShirts = new int[SizeTypes.values().length];
List<BeanModel> models = store.getModels();
for (BeanModel bm : models) {
 SizeTypes st = bm.get("shirt");
 numShirts[st.ordinal()]++;
}

ChartModel cm = new ChartModel();
cm.setBackgroundColour("#FCFCFC");
Legend lgd = new Legend(Position.RIGHT, true);
lgd.setMargin(10);
lgd.setPadding(10);
cm.setLegend(lgd);
PieChart pie = new PieChart();
pie.setAlpha(0.5f);
pie.setNoLabels(true);
pie.setTooltip("#label# #percent#
#val#");
pie.setAnimate(false);
pie.setAlphaHighlight(true);
pie.setGradientFill(true);
pie.setColours("#ff0000","#00aa00","#0000ff","#ff00ff");

int n = 0;
for (SizeTypes st : SizeTypes.values()) {
 String lbl = st.toString();
 pie.addSlices(new Slice(numShirts[n++], lbl, lbl));
}
cm.addChartConfig(pie);
if (chart != null) chart.setChartModel(cm);

Many other chart types, such as BarChart, AreaChart, LineChart, and RadarChart, are available.
You can see a full list of charts within the GXT Explorer application
(http://extjs.com/explorer).

http://extjs.com/explorer

128 Developing with Ext GWT

GXT also provides sophisticated store support that allows you to simply identify the properties
that should be bound to axis labels and values. Using the Chart widget’s support for the store
simplifies the notification and update of chart data when the store’s data has changed internally.

Unfortunately, Chart does not currently support grouped data, as required by our application, so
a custom update mechanism had to be implemented. Even so, the results are the same: when
you tie a Chart to a StoreListener (as you’ve done), you can achieve some truly amazing
interactive data visualization.

I guess this kind of interaction is expected of any comprehensive rich Internet application—
lucky for us it was easy to do.

Additional Bits
There are a few additional items within the application that have not been explained. Most
significant is the New Customer dialog, which shows when the user selects the New button.

The New Customer dialog, shown in Figure 6-7, is a combination of a Dialog with a
FormPanel. A very polished and styled look is produced when you use this combination of
widgets. For example, an inset is rendered around the field widgets that direct the user to the
items that need to be completed before the dialog can be successfully saved and closed.

Figure 6-7. The New Customer dialog

Like most application dialogs, Dialog is modal and is given an icon to connect the window with
the action just performed. Dialog is configured to be closable (meaning a close box shows at the
top right of the heading), and the default CloseAction is defined to close, rather than just hide
the widget.

 Developing with Ext GWT 129

Tip The default behavior for Dialog is to hide on close, which does not destroy the
window or any associated Dialog widget objects. Changing the default CloseAction to CLOSE
instead of HIDE requires that the entire Dialog be created and re-opened again, which may take
longer to execute and render each time.

Either option is acceptable, but depending on the frequency of use, you may wish to consider
leaving the default CloseAction set to HIDE. This means, though, that you’ll need to manage the
reset or clearing of previously used internal widgets when you reuse a hidden Dialog.

New Customers
As the FormPanel is enclosed within a Dialog, there is no need to include a header on the panel,
and so in Listing 6-27, the panel is configured with borders, body borders, and header visibility
all set to false.

Listing 6-27 produces the New Customer dialog.

Listing 6-27. New Customers: Dialog
final Dialog newDialog = new Dialog();
newDialog.setModal(true);
newDialog.setPlain(true);
newDialog.setIconStyle("icon-new");
newDialog.setHeading("New Customer");
newDialog.setSize(450, 170);
newDialog.setClosable(true);
newDialog.setCloseAction(CloseAction.CLOSE);
newDialog.setLayout(new FitLayout());

FormPanel panel = new FormPanel();
panel.setBorders(false);
panel.setBodyBorder(false);
panel.setPadding(5);
panel.setHeaderVisible(false);

Button save = new Button("Save");
save.addSelectionListener(new SelectionListener<ButtonEvent>() {
 public void componentSelected(ButtonEvent ce) {
 Field fn = (Field) newDialog.getItems().get(0);
 Field ln = (Field) newDialog.getItems().get(1);
 Field em = (Field) newDialog.getItems().get(2);

130 Developing with Ext GWT

 if (fn.isValid() && em.isValid()) {
 ...
 }
 }
});

When the user selects the New Customer dialog’s Save button, the dialog’s field values are
retrieved and checked for validation. If the firstname (fn) and email (em) fields are valid, the
customer data is saved using the code in Listing 6-28.

Listing 6-28. New Customers: Service
Customer c = new Customer();
c.setFirstname((String) fn.getValue());
c.setLastname((String) ln.getValue());
c.setEmail((String) em.getValue());
BeanModelFactory factory = BeanModelLookup.get().getFactory(Customer.class);
selectedModel = factory.createModel(c);

Map<String, Customer> save = new HashMap<String, Customer>();
save.put(c.getEmail(),c);

AsyncCallback<Boolean> aCallback = new AsyncCallback<Boolean>() {
 public void onFailure(Throwable caught) {
 }

 public void onSuccess(Boolean result) {
 if (result) {
 store.add(selectedModel);
 formBindings.bind(selectedModel);
 grid.getSelectionModel().select(selectedModel);
 newDialog.close();
 }
 }
};
service.updateSaveCustomers(save, aCallback);

To save a customer, a new Customer object is created and the values filled. Next, a BeanModel
factory is used to create a new instance of a Customer BeanModel object. This object is
eventually used to add the newly created customer to the store, so it appears in the Grid and
Chart panels.

The Customer object is placed into a HashMap, which is used by the server’s
updateSaveCustomers service to update (or insert) customer data. A callback is created that,
upon success, adds the BeanModel to the store, binds the form, and selects the model within the
grid.

 Developing with Ext GWT 131

Update Customers
When models within the store are modified, the Update Customer button is enabled. When the
button is selected, a MessageBox is created, asking the user whether to commit all modified
records (Yes), reject the commit (No), or cancel the commit (Cancel). Listing 6-29 shows the
creation of the MessageBox.

Listing 6-29. Update Customers: Yes, No, or Cancel
String msg = "Yes to commit all changes, "
 + "No to reject all changes, or Cancel";
MessageBox box = new MessageBox();
box.setTitle("Update modified rows?");
box.setMessage(msg);
box.addListener(Events.Close, callback);
box.setIcon(MessageBox.QUESTION);
box.setButtons(MessageBox.YESNOCANCEL);
box.show();

The callback defined in the MessageBox confirms which button was selected. If the selection is
Yes, the code in Listing 6-30 is executed. If the selection is No, store.rejectChanges() is
called, rejecting and resetting all change records to their prior state. If the selection is Cancel,
nothing occurs and the MessageBox closes.

Listing 6-30. Update Customers: Service
AsyncCallback<Boolean> aCallback = new AsyncCallback<Boolean>() {
 public void onFailure(Throwable caught) {
 }

 public void onSuccess(Boolean result) {
 if (result) {
 store.commitChanges();
 }
 }
};
service.updateSaveCustomers(getStoreChanges(), aCallback);

The server’s updateSaveCustomers service is again used to update the store’s changed models.
These models are obtained using the code in Listing 6-31.

Listing 6-31. Getting the Store Changes
private Map<String, Customer> getStoreChanges() {
 Map<String, Customer> changes;
 changes = new HashMap<String, Customer>();
 for (Record r : store.getModifiedRecords()) {

132 Developing with Ext GWT

 BeanModel bm = (BeanModel) r.getModel();
 String email = bm.get("email");
 if (r.isModified("email")) {
 email = (String) r.getChanges().get("email");
 }
 changes.put(email, (Customer) bm.getBean());
 }
 return changes;
}

The code in Listing 6-31 simply builds a HashMap of all modified records, ensuring each
Customer stored in the HashMap is keyed with the original e-mail address.
Record.getChanges() provides a list of the original values.

Delete Customers
When the user selects the Delete Customer button, the removeCustomer service is used to delete
the customer record from the server’s persistent store.

The Customer record to be removed is identified by the last selected model set by the grid
SelectionModel listener. Listing 6-32 shows the code for the service call.

Listing 6-32. Delete Customers: Service
AsyncCallback<Boolean> aCallback = new AsyncCallback<Boolean>() {
 public void onFailure(Throwable caught) {
 }

 public void onSuccess(Boolean result) {
 if (result) {
 store.remove(selectedModel);
 grid.getSelectionModel().deselectAll();
 }
 }
};
service.removeCustomer((Customer)selectedModel.getBean(),aCallback);

Listing 6-33 shows the code for the Are You Sure? MessageBox.

Listing 6-33. Delete Customers: Are you sure?
String msg = "Are you sure you wish to permanently "
 + "delete this customer record?";
MessageBox.confirm("Delete Customer?", msg, callback);

 Developing with Ext GWT 133

The Server Code
All that remains is a brief overview of the server side of the application’s RemoteServlet code.
In a real application, you’ll no doubt have a comprehensive data management and persistence
layer configured. In this simple application, data is written to a simple comma-separated value
(CSV) file that loads and saves the entire list as needed.

Listing 6-34 shows the code that gets, removes, and updates customers.

Listing 6-34. Get, Remove, and Update Customers
public List<Customer> getCustomers() {
 if (customers == null) {
 loadCustomers();
 }
 return new ArrayList<Customer>(customers.values());
}

public Boolean removeCustomer(Customer c) {
 if (customers.remove(c.getEmail()) != null) {
 return saveCustomers();
 }
 return false;
}

public Boolean updateSaveCustomers(Map<String, Customer> changes) {
 for (String origEmail : changes.keySet()) {
 customers.remove(origEmail);
 Customer newUpdated = changes.get(origEmail);
 customers.put(newUpdated.getEmail(), newUpdated);
 }
 return saveCustomers();
}

Summary
You’ve now got a functional application that covers most of the user aspects typically expected
of a rich Internet application. I introduced the FormBinding and Chart widgets and combined
these new items with things covered in previous chapters.

We’ve reached the end of the book, and unfortunately we still haven’t covered every single part
of the GXT library. We covered the Google Web Toolkit, a bunch of widgets ranging from
Buttons to Grids, and how to build a complete and functional rich Internet application.

134 Developing with Ext GWT

GXT has many other aspects that just couldn’t be explored within the pages of this book. Some
of these features follow:

 MVC: A model-view-controller framework that, for advanced/larger applications, provides
a messaging system to keep your data model, controller logic, and view widgets all
logically independent.

 Desktop: A framework for simulating a full desktop experience, built within the browser.
Typically used in cases where a full web-desktop experience is needed (i.e., multiple
subapplications where users can launch applications like they would in a full desktop
operating system). As a web application, this provides the user with a similar experience to
their existing desktop, but delivered via the Web.

 Charts: In this book we only dipped slightly into the full comprehensive charting library
included in GXT 2.0. There are a range of bar charts (3D, Glass, Horizontal, Cylindrical);
line, area, and scatter point charts; and full support for configuring the X,Y axis, including a
Radar-style spider-radial axis.

 Tree/Table: While we looked at a Tree example, there is a fair amount more you can do
with Tree. Also, a TreeTable widget combines the best features of the Tree and Table
widgets into a composite data widget.

So while I covered a significant amount of the GXT library within this book, there is still much
more to be discovered. I strongly recommend that you visit the GXT Explorer and Samples
sections of the Ext JS web site for more information and examples.

So go visit http://extjs.com/products/gxt/, and keep building.

http://extjs.com/products/gxt/

Copyright
Developing with Ext GWT: Enterprise RIA Development

© 2009 by Grant Slender

All rights reserved. No part of this work may be reproduced or transmitted in any form or by
any means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN-13 (electronic): 978-1-4302-1941-5

ISBN-13 (paperback): 978-1-4302-1940-8

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 233
Spring Street, 6th Floor, New York, NY 10013, and outside the United States by Springer-
Verlag GmbH & Co. KG, Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States: phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders@springer-
ny.com, or visit http://www.springer-ny.com. Outside the United States: fax +49 6221 345229,
e-mail orders@springer.de, or visit http://www.springer.de.

For information on translations, please contact Apress directly at 2855 Telegraph Ave, Suite
600, Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or
visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although
every precaution has been taken in the preparation of this work, neither the author(s) nor Apress
shall have any liability to any person or entity with respect to any loss or damage caused or
alleged to be caused directly or indirectly by the information contained in this work.

mailto:orders@springer-ny.com
mailto:orders@springer-ny.com
mailto:orders@springer-ny.com
http://www.springer-ny.com
mailto:orders@springer.de
http://www.springer.de
mailto:info@apress.com
http://www.apress.com

	Prelims
	Contents
	Introduction
	This Book’s Audience
	Getting the Example Code
	About the Author
	Chapter 1: Overview of Ext GWT and GWT
	About Ext GWT
	About GWT
	GWT Crash Course
	How Does It Work?
	How Is It Developed?
	How Is It Deployed?

	Summary

	Chapter 2: Organizing the Environment
	The Basic Ingredients
	Setting Up Eclipse
	Defining User Libraries
	Creating an Application
	Importing to Eclipse
	Adjusting for GXT
	Including the Libraries
	Changing the GWT Module File
	Cleaning Up the HTML Host File
	Copying Resources

	My First GXT App

	Summary

	Chapter 3: Widgets, Widgets, Everywhere
	The Complete Ext-ended Family
	.widget
	Component
	How Things Are Rendered
	Events
	Sinking Events
	Container
	LayoutContainer
	HorizontalPanel and VerticalPanel

	ContentPanel
	Viewport
	Window and Dialog
	MessageBox
	TabPanel and TabItem
	Html and HtmlContainer
	ProgressBar
	Slider
	DataList
	ListView

	.widget.button
	Button, ToggleButton, and SplitButton
	Status
	IconButton and ToolButton

	.widget.toolbar
	.widget.menu
	.widget.tips
	State Management
	Themes—Let’s Make It Pretty
	Summary

	Chapter 4: Advanced Widgets and Stuff
	Layouts
	GWT Panels
	Cascading Layouts
	Layout Managers
	Layout Tips-n-Tricks
	CenterLayout
	AnchorLayout and AbsoluteLayout
	FitLayout and FlowLayout
	AccordianLayout and CardLayout
	RowLayout and FillLayout
	HBoxLayout and VBoxLayout
	ColumnLayout, TableLayout, and TableRowLayout
	BorderLayout
	FormLayout

	Forms
	A Form Example
	Form’s Rich Text Editor

	Portal
	Drag-n-Drop
	XTemplates
	Summary

	Chapter 5: Working With Data
	Data, Stores, and Loaders
	Models
	Stores
	Loaders
	Using BeanModel Objects
	Stores and Loaders
	GWT RPC

	Grid
	A Basic Grid
	EditorGrid
	Even More Grid

	Binders: Table, Tree, and TreeTable
	Summary

	Chapter 6: A Working Example
	myCustomerContacts Application—What’s New?
	When Loading
	Customer Data
	Keeping Data Independent
	Layout and Construction
	When the Module Loads
	Preparing for Services
	Building the Main Layout
	Building the Grid Panel
	Building the Form Panel
	Building the Chart Panel
	Additional Bits
	New Customers
	Update Customers
	Delete Customers

	The Server Code

	Summary

	Copyright

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

